3,485 research outputs found

    Scenario Based Run-time Switching for Adaptive CNN-based Applications at the Edge

    Get PDF
    Convolutional Neural Networks (CNNs) are biologically inspired computational models that are at the heart of many modern computer vision and natural language processing applications. Some of the CNN-based applications are executed on mobile and embedded devices. Execution of CNNs on such devices places numerous demands on the CNNs, such as high accuracy, high throughput, low memory cost, and low energy consumption. These requirements are very difficult to satisfy at the same time, so CNN execution at the edge typically involves trade-offs (e.g., high CNN throughput is achieved at the cost of decreased CNN accuracy). In existing methodologies, such trade-offs are either chosen once and remain unchanged during a CNN-based application execution, or are adapted to the properties of the CNN input data. However, the application needs can also be significantly affected by the changes in the application environment, such as a change of the battery level in the edge device. Thus, CNN-based applications need a mechanism that allows to dynamically adapt their characteristics to the changes in the application environment at run-time. Therefore, in this article, we propose a scenario-based run-time switching (SBRS) methodology, that implements such a mechanism

    Multi Hamilton-Jacobi quantization of O(3) nonlinear sigma model

    Get PDF
    The O(3) non-linear sigma model is investigated using multi Hamilton-Jacobi formalism. The integrability conditions are investigated and the results are in agreement with those obtained by Dirac's method. By choosing an adequate extension of phase space we describe the transformed system by a set of three Hamilton-Jacobi equations and calculate the corresponding action.Comment: 10 pages, LaTeX, to be published in Mod. Phys. Lett.

    Comments on regularization ambiguities and local gauge symmetries

    Full text link
    We study the regularization ambiguities in an exact renormalized (1+1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.Comment: Latex 2e, 4 pages. To appear in Modern Physics Letters

    Tradescantia bioassays as monitoring systems for environmental mutagenesis: a review.

    Get PDF
    Since the early studies on the genetic effects of chemical and physical agents, species and clones of Tradescantia have been used as experimental subjects, by virtue of a series of favorable genetic characteristics. Bearing just six pairs (2n = 12) of large, easily observable chromosomes, cells from almost every part of the plant, from the root tips to the developing pollen tube, yield excellent material for cytogenetic studies. As a consequence of the intensive use of Tradescantia in genetic studies, a series of genetic characteristics have been found that offer opportunities for the detection of agents affecting the stability of the genome. At least five such characteristics have been selected as endpoints for the establishment of assays to evaluate mutagenesis. Three of these, root-tip mitosis, pollen-tube, and microspore mitosis are essentially chromosome aberration assays, wherein one observes and evaluates the visible damage in the chromosomes. A fourth, the stamen-hair mutation assay (Trad-SHM), is a point mutation mitotic assay based on the expression of a recessive gene for flower color in heterozygous plants. The fifth assay is a cytogenetic test based on the formation of micronuclei (Trad-MCN) that result from chromosome breakage in the meiotic pollen mother cells. This article examines the characteristics and fundamentals of the Trad-MCN and the Trad-SHM assays and reviews the results obtained to date with these systems in the assessment of environmental mutagenesis

    A robust method for quantifying 42 phenolic compounds by RP-HPLC/DAD: columns performance and characterization of Brazilian Citrus peels.

    Get PDF
    Reliable analytical methods are the basis for the elucidation of phenolic compounds in foods. This study aimed to optimize and validate a method for determining 42 phenolics using reverse-phase (RP) high-performance liquid chromatography (HPLC) coupled to diode-array-detector-DAD. The performance of two RP columns was eval- uated. The 150x4.6 mm 3-ÎŒm column showed superior separation quality, whereas 35 of the 42 phenolics showed a separation resolution ≄1.5. The method’s linearity, precision (coefficient variation< 3.09%), recovery (87.5-103.2%), specificity, limits of detection (0.04-0.25 mg/L), and quantification (0.06-0.25 mg/L) had acceptable ranges. Thirty phenolics were quantified in Citrus peels, mainly flavanones, flavanols, flavonols, and phenolic acids, highlighting the high values of hesperidin (535-35070 mg/kg) and naringin (26-36466 mg/kg). Lemon peels named ’Lisboa,’ ’Thaiti,’ ’Thaiti-2000’, and ’Thaiti-2001’ presented the main phenolics associated with antioxidant capacity. The presented method was robust for determining 42 phenolic compounds, offering a new approach for bioactive compound quantification in food matrices

    Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology

    Get PDF
    We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological model of Bianchi type I with a minimally coupled massive scalar field ϕ\phi as source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to other approaches we allow strong anisotropy. Combining analytical and numerical methods, we apply an adiabatic approximation for ϕ\phi, and as new feature we find a period-doubling bifurcation. This bifurcation takes place near the cosmological quantum boundary, i.e., the boundary of the quasiclassical region with oscillating ψ\psi-function where the WKB-approximation is good. The numerical calculations suggest that such a notion of a ``cosmological quantum boundary'' is well-defined, because sharply beyond that boundary, the WKB-approximation is no more applicable at all. This result confirms the adequateness of the introduction of a cosmological quantum boundary in quantum cosmology.Comment: Latest update of the paper at http://www.physik.fu-berlin.de/~mbach/publics.html#

    On Equivalence of Duffin-Kemmer-Petiau and Klein-Gordon Equations

    Get PDF
    A strict proof of equivalence between Duffin-Kemmer-Petiau (DKP) and Klein-Gordon (KG) theories is presented for physical S-matrix elements in the case of charged scalar particles interacting in minimal way with an external or quantized electromagnetic field. First, Hamiltonian canonical approach to DKP theory is developed in both component and matrix form. The theory is then quantized through the construction of the generating functional for Green functions (GF) and the physical matrix elements of S-matrix are proved to be relativistic invariants. The equivalence between both theories is then proved using the connection between GF and the elements of S-matrix, including the case of only many photons states, and for more general conditions - so called reduction formulas of Lehmann, Symanzik, Zimmermann.Comment: 23 pages, no figures, requires macro tcilate
    • 

    corecore