2,351 research outputs found

    Heat transfer coefficients from Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil

    Get PDF
    This study aimed to carry out experimental work to obtain, for Newtonian and non-Newtonian fluids, heat transfer coefficients, at constant wall temperature as boundary condition, in fully developed laminar flow inside a helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w) and the non-Newtonian fluids aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations 0.1%, 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations 0.1% and 0.2% (w/w). According to the rheological study performed, the polymer solutions had shear thinning behavior and different values of elasticity. The helical coil used has internal diameter, curvature ratio, length and pitch, respectively: 0.004575 m, 0.0263, 5.0 m and 11.34 mm. The Nusselt numbers for the CMC solutions are, on average, slightly higher than those for Newtonian fluids, for identical Prandtl and generalized Dean numbers. As outcome, the viscous component of the shear thinning polymer tends to potentiate the mixing effect of the Dean cells. The Nusselt numbers of the XG solutions are significant lower than those of the Newtonian solutions, for identical Prandtl and generalized Dean numbers. Therefore, the elastic component of the polymer tends to diminish the mixing effect of the Dean cells. A global correlation, for Nusselt number as a function of Péclet, generalized Dean and Weissenberg numbers for all Newtonian and non-Newtonian solutions studied, is presented

    New methods to reconstruct XmaxX_{\rm max} and the energy of gamma-ray air showers with high accuracy in large wide-field observatories

    Full text link
    Novel methods to reconstruct the slant depth of the maximum of the longitudinal profile (\Xmax) of high-energy showers initiated by gamma-rays as well as their energy (E0E_0) are presented. The methods were developed for gamma rays with energies ranging from a few hundred GeV to ∼10\sim 10 TeV. An estimator of \Xmax is obtained, event-by-event, from its correlation with the distribution of the arrival time of the particles at the ground, or the signal at the ground for lower energies. An estimator of E0E_0 is obtained, event-by-event, using a parametrization that has as inputs the total measured energy at the ground, the amount of energy contained in a region near to the shower core and the estimated \Xmax. Resolutions about 40 (20) g/cm240 \, (20)\,{\rm g/cm^2} and about 30 (20)%30 \, (20)\% for, respectively, \Xmax and E0E_0 at 1 (10) TeV1 \, (10) \ \rm{TeV} energies are obtained, considering vertical showers. The obtained results are auspicious and can lead to the opening of new physics avenues for large wide field-of-view gamma-ray observatories. The dependence of the resolutions with experimental conditions is discussed.Comment: 11 pages; 15 figures, to appear in EPJ

    Experimental observation of fractional topological phases with photonic qudits

    Full text link
    Geometrical and topological phases play a fundamental role in quantum theory. Geometric phases have been proposed as a tool for implementing unitary gates for quantum computation. A fractional topological phase has been recently discovered for bipartite systems. The dimension of the Hilbert space determines the topological phase of entangled qudits under local unitary operations. Here we investigate fractional topological phases acquired by photonic entangled qudits. Photon pairs prepared as spatial qudits are operated inside a Sagnac interferometer and the two-photon interference pattern reveals the topological phase as fringes shifts when local operations are performed. Dimensions d=2,3d = 2, 3 and 44 were tested, showing the expected theoretical values.Comment: 6 pages, 4 figure

    Gravitational diffraction radiation

    Get PDF
    We show that if the visible universe is a membrane embedded in a higher-dimensional space, particles in uniform motion radiate gravitational waves because of spacetime lumpiness. This phenomenon is analogous to the electromagnetic diffraction radiation of a charge moving near to a metallic grating. In the gravitational case, the role of the metallic grating is played by the inhomogeneities of the extra-dimensional space, such as a hidden brane. We derive a general formula for gravitational diffraction radiation and apply it to a higher-dimensional scenario with flat compact extra dimensions. Gravitational diffraction radiation may carry away a significant portion of the particle's initial energy. This allows to set stringent limits on the scale of brane perturbations. Physical effects of gravitational diffraction radiation are briefly discussed.Comment: 5 pages, 2 figures, RevTeX4. v2: References added. Version to appear in Phys. Rev.

    Produção de sementes genéticas de arroz irrigado na Embrapa Arroz e Feijão, na safra 2010/2011.

    Get PDF
    O objetivo deste trabalho é descrever e apresentar os resultados do processo atual de produção de sementes genéticas de arroz na Embrapa Arroz e Feijão na safra 2010/2011

    LATTES: A new gamma-ray detector concept for South America

    Get PDF
    Currently the detection of Very High Energy gamma-rays for astrophysics rely on the measurement of the Extensive Air Showers (EAS) either using Cherenkov detectors or EAS arrays with larger field of views but also larger energy thresholds. In this talk we present a novel hybrid detector concept for a EAS array with an improved sensitivity in the lower energies (~ 100 GeV). We discuss its main features, capabilities and present preliminary results on its expected perfomances and sensitivities.This wide field of view experiment is planned to be installed at high altitude in South America making it a complementary project to the planned Cherenkov telescope experiments and a powerful tool to trigger further observations of variable sources and to detect transients phenomena
    • …
    corecore