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ABS T RA CT

 
 

 

This study aimed to carry out experimental work to obtain, for Newtonian and non-Newtonian fluids, heat transfer coefficients, at constant wall 

temperature as boundary condition, in fully developed laminar flow inside a helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 

25%, 36%, 43%, 59% and 78% (w/w) and the non-Newtonian fluids aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations 

0.1%, 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations 0.1% and 0.2% (w/w). 

According to the rheological study performed, the polymer solutions had shear thinning behavior and different values of elasticity. The heli- cal coil used 

has internal diameter, curvature ratio, length and pitch, respectively: 0.004575 m,   0.0263, 

5.0 m and 11.34 mm. The Nusselt numbers for the CMC solutions are, on average, slightly higher than those for Newtonian fluids, for identical Prandtl 

and generalized Dean numbers. As outcome, the viscous component of the shear thinning polymer tends to potentiate the mixing effect of the Dean 

cells. The Nusselt numbers of the XG solutions are significant lower than those of the Newtonian solutions, for identical Prandtl and generalized 

Dean numbers. Therefore, the elastic component of the polymer tends to diminish the mixing effect of the Dean cells. A global correlation, for Nusselt 

number as a function of Péclet, generalized Dean and Weissenberg numbers for all Newtonian and non-Newtonian solutions studied, is presented. 
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1. Introduction 

 
Coiled tubes of helical shape are widely used as heat exchangers 

and have multiple applications in various industries: chemical, bio- 

logical, petrochemical, biomedical among others. In these indus- 

tries, they are applied in a large range of processes, such as: 

sterilization, pasteurization, concentration, crystallization, separa- 

tion (distillation) and reaction. They are also found in general pur- 

pose equipment: refrigeration, air conditioning and water heating. 

The fluids involved in these processes may have Newtonian or non- 

Newtonian behavior. 

The helical coils are widely used because they have large heat 

transfer areas, they are compact, and, above all, their geometry 

promotes a good mixing of the fluids, increasing the heat and mass 

transfer coefficients. In addition, this equipment has low cost and 

is of easy construction and   maintenance. 

The mixing characteristics are consequence of the development 

of secondary flows along the tube, the so called Dean effect (Dean 

 
 

[1]). These secondary flows appear due to the centrifugal force act- 

ing on the fluid elements. The difference in axial velocity among 

the fluid elements flowing in a cross-section leads to a centrifugal 

gradient. The elements flowing in the center are projected, under 

the centrifugal force, into the outer wall direction of the coil, where 

they suffer a decrease of velocity. Afterwards, they return to the 

center of the tube, forming two, for the case of tubes with a circular 

cross-section, counter-rotation vortices, the so called Dean cells 

(Dean [1]). This flow pattern promotes the mixture of the fluid ele- 

ments. Studies have shown that these secondary flows still have a 

stabilizing effect on the global flow, promoting a higher critical 

Reynolds number for transition from laminar to turbulent than 

that in a straight tube. The secondary flow enhances also the heat 

transfer in curved pipes in comparison to straight pipes, i.e., the 

heat transfer coefficients from the coil to the flowing fluid are high- 

er than those in a straight pipe, for the same flow conditions and 

Prandtl number. 

Many authors studied, theoretically and experimentally, heat 

transfer in coils for Newtonian fluids, among them: Mori and 

Nakayama [2–4], Schmidt [5], Dravid et al. [6], Akiyama and Cheng 

[7,8], Tarbell and Samuels [9], Kalb and Seader [10], Olivier and Asg- 

har [11], Janssen and Hoogendoorn [12], Manlapaz and    Churchill 
 



G0 

G00 

  

Nomenclature 

 

Ai internal lateral area of the coil tube  (m2) 

Amln mean logarithmic lateral area of the coil tube  (m2) 

Ao external lateral area of the coil tube  (m2) 

aT shift factor 

Cp mean heat specific capacity of the fluid (J kg-1 K-1) 

Cpwater mean heat specific capacity of the water (J kg-1 K-1) 

Cpsyst mean heat specific capacity of the system (oil, coil and 

 

Tw internal wall temperature of the coil (°C) 

UA global heat transfer coefficient from the oil to the fluid 

(solutions  of  glycerol,  CMC  and  XG)  in  the  coil  times 

the lateral area of the coil (W K-1) 

(UA)losses    global heat transfer coefficient from the oil to the ambi- 

ent air times the internal area of the tank (W K-1) 

v mean flow velocity of the fluid (m s-1) 
tank) (J kg-1 K-1) 

dc coil diameter (m) 

dc/di curvature of the coil 

di inside tube diameter (m) 

G0 storage module (Pa) 

G00 loss module (Pa) 

r reduced storage module (Pa) 

r reduced loss module (Pa) 

V_ volumetric  flow  of  the  fluid  flowing  inside  the    coil 

(m3 s-1) 

xcoil wall thickness of the tube coil (m) 

DH activation energy for flow (Jmol-1) 

DP pressure drop of the fluid in the coil  (Pa) 

DTln logarithmic mean temperature difference (°C) 

 
Greek symbols 

hic heat transfer film coefficient between the inner wall  of 

the coil and the fluid flowing in the coil (W m2 K-1) 
c_ shear rate (s-1) 

c_ r reduced shear rate (s-1) 

hoc 

 
kcopper 

heat transfer film coefficient between the oil and the 

outer wall of the coil (W m2 K-1) 

thermal conductivity of the copper (W m K-1) 

g viscometric viscosity (Pa s) 

go viscometric viscosity at zero shear rate (Pa s) 

gr reduced viscometric viscosity (Pa s) 

kf thermal conductivity of the fluid (W m K-1) k relaxation time (s) 

Kw 

 
K 

consistency index of the fluid calculated at wall temper- 

ature (Tw) (Pa sn) 

consistency index of the fluid for a given temperature 

(Pa sn) 

q density (kg m-3) 

qref density at Tref  (kg m-3) 

x angular frequency (s-1) 

xr reduced angular frequency (s-1) 
Lcoil length of the coil  (m)  
m minimum Dimensionless numbers 
M maximum De Dean number 
msyst 

m_ 
m_ water 

N1 

mass of oil, coil and tank (kg) 

mass flow of the fluid flowing inside the coil (kg s-1) 

mass flow of water inside the coil (kg s-1) 

first normal tress difference (kg m-1 s-2) 

De(g) modified Dean number 

El elasticity number 

Eu Euler number 

Gz Graetz number 

n power-law index of the fluid (index of behavior) He helical number 

nt 

p 
Q_ 

R 

number of turns of the  coil 

pitch of the coil (m) 

heat power (W) 

ideal gas constant ((Jmol-1 K-1) 

Nuc Nusselt number for a fluid in a coil 

Nus Nusselt number for a fluid in a straight tube 

Pe Péclet number 

Pr Prandtl number 

t 
T 

time (s) 

temperature (K) 
Pr(g) modified Prandtl number 

Pr⁄ Prandtl number (used by Hsu and Patankar [19]) 
Tamb 

tdef 

Te 

ambient temperature (°C) 
characteristic time of the flow  (s) 

inlet temperature of the fluid in the coil  (°C) 

Pr(N) Prandtl number (used by Nigam et al. [20]) 

(Pr)w Prandtl number at wall temperature of the tube 

Re Reynolds number 

Tf 

Tle 

mean film temperature of the fluid (°C) 
external surface temperature of the lateral wall of   the 

Rec critical Reynolds number 
Wi Weissenber gnumber 

 agitation tank (°C)  
Tli internal surface temperature of the lateral wall of   the Acronyms 

 agitation tank (°C) CMC carboxymethylcellulose 

Tm mean temperature of the fluid (bulk temperature) (°C) MXEC modified Xin and Ebadian correlation 
Toil bulk oil temperature (°C) PAA polyacrylamide 
Tref reference temperature (K) SAOS small amplitude oscillatory shear tests 

Ts exit temperature of the coil (°C) w/w percentage by weight 
Tte external  surface  temperature  of  the  top  wall  of  the XG xanthan gum 

 agitation tank (°C)  
Tti internal  surface  temperature  of  the  top  wall  of  the  

 agitation tank (°C)  

 

[13], Xin and Ebadian [14] and Jayakumar et al. [15,16]. The great 

majority of these studies are theoretical, complemented with 

numerical methods and applied to tubes with zero pitch geometry. 

The published studies about heat transfer coefficients for non- 

Newtonian fluids flowing inside coils are still scarce. From a liter- 

ature review, we stand out the following works: Rajasekharan et al. 

[17,18], Olivier and Asghar [11], Hsu and Patankar [19] and Nigam 

et al. [20]. The majority of these authors concluded that, for the 

same flow conditions and Prandtl number, shear thinning fluids 

have smaller heat transfer coefficients than Newtonian  fluids, 

while shear thickening fluids have higher. The study of the elastic 

effect of the fluids on the heat transfer coefficients in helical coils is 

still very incipient. 

The motivation of the present study is to contribute to the yet 

incipient study of non-Newtonian fluids, in particular, to the anal- 

ysis of the elastic effect in the heat transfer coefficients in helical 



  

 

Table 1 

Literature for Nusselt number correlations applied to Newtonian  fluids. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 
    
    
    

 

 
    
    
    

 



Table 2 

Literature for Nusselt number correlations applied to non-Newtonian   fluids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

 

 

 

 

 

coils. The study concerning Newtonian fluids is to check the exper- 

imental set-up and to support, through comparisons at identical 

experimental conditions, the study of the non-Newtonian fluids. 

With these proposes, a detail revision of the literature will be done 

in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

where v, di, q and g are, respectively, the mean velocity, the inside 

diameter of the tube of the coil, the density of the fluid and the vis- 

cometric viscosity of the   fluid; 

1.1. Review for Newtonian fluids 

 
The present review is particularly incisive in studies with exper- 

imental and geometric conditions compatible with  those  used in 

the present work. Table 1 presents the Nusselt numbers in coil, 

 

where dc  is the coil diameter; 

 

 

 

Nuc, correlations and summarizes the conditions and consider- 

ations of these studies. 
The dimensionless numbers presented in Table 1 are:  Reynolds, 

where Cp is the heat capacity and kf the thermal conductivity of the 

fluid; 

(Re), Dean, (De), Prandtl, (Pr), Graetz, (Gz), and Helical, (He) num- 

bers,  and the  respective  definitions  are listed below: 

 
  



 

where Lcoil is the length of the coil and m_ the mass flow of the fluid 

and the product RePr the Péclet number, Pe; 

 

  
 i  

 
 

 

  
  

 

where p is the pitch of the coil. 

 

1.2. Review for non-Newtonian fluids   

 
The correlations chronologically listed in Table 2 allow the cal-  

culation of Nusselt number in coil, Nuc, for laminar flow and fully 

developed non-Newtonian fluids, with the viscometric component 
 

  

following the power law. These studies are, as referred above, 

scarce. 
-  

The dimensionless numbers used in Table 2   are: 
 

  

- generalized Reynolds number (Reg) (Metzner and Reed [21]): -  

 
Reg ¼      

 

 

where K is the consistency index and n the behavior index of the 

fluid. 
 

Table 3 

Dimensions of the helical coil of copper. 

 
 

 

Average of the measured 

values 

Internal diameter of the coil (mm) 167.79 ± 1.21 

External coil diameter (mm) 179.47 ± 1.27 

Coil height (mm) 111.11 ± 0.85 

Vertical distance between turns (mm) 4.99 ± 0.09 

2. Experimental work 

 
2.1. Experimental set-up 

 
Table 3 presents the dimensions of the copper coil used in this 

study and the respective uncertainties. Fig. 1 shows a flow diagram 
Angle of the turns with the horizontal plane 

(°) 
3.17 ± 0.19 of the experimental set-up employed to determine the heat trans- 

Inside diameter of the tube (mm) 4.32 ± 0.05 

External diameter of the tube (mm) 6.35 ± 0.05 

Internal diameter of the fittings (mm) 4.01 ± 0.03 

Length of the coil tube (m) 5.5 ± 3.79 

Coil pitch (mm) 11.34 

Number of turns 9.4 

fer coefficients, for the condition of constant wall temperature. The 

fluid circulated in a close loop from a first tank, where the temper- 

ature was controlled and set constant at 20 °C by means of a heat 

pump and a refrigerator, to inside the copper coil. The coil was sub- 

merged in a bath of oil mechanically agitated placed in another 

   tank as depicted in Fig. 1. This tank was thermally isolated and 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Scheme of the experimental set-up. The temperature meters are: Toil for the oil temperature; Te and Ts for the fluid at the entrance and exit of the coil, respectively; Tw 

for the wall temperature of the coil; Tle and Tli for the external and internal surface of the lateral wall of the tank, respectively; Tte and Tti for the external and internal surface of 

the top wall of the tank, respectively; Tamb for the ambient temperature. dP represents the pressure transducer used to measure the pressure drop of the fluid inside the helical 

coil. A heat pump and a refrigerator were used to maintain constant the temperature of the fluid at the coil inlet. A temperature controller was used to maintain the oil at 

constant temperature. The electromagnetic flowmeter measured the fluid flow rate. 



 
was provided with a heating system and a temperature controller. 

The experimental set-up had a centrifugal pump, a transducer to 

measure the pressure drop of the fluid inside the helical coil 

(uncertainty 0.028% full scale (0–6 bar)), an electromagnetic flow- 

meter (uncertainty of 1.2% of the volumetric flow), several ther- 

mometers  T  type  and  Pt100  type  (maximum  uncertainty   of 

1.3 °C) and two data acquisition systems (a OMEGA PCI 1602 sys- 

tem with 16 bit of resolution for the transducer and electromag- 

netic flowmeter and a Validyne UPC601-T system with 14 bit of 

resolution for the temperature   meters). 

The oil, where the coil was immersed, was a mineral oil used for 

heat transfer proposes, and it was accompanied by a  technical 

sheet specifying the physical   properties. 

The heat transfer boundary condition was constant wall tem- 

perature  (Tw)  due  to  the  high  rotational  velocity  of  the  stirrer 

(1100 min-1) and, by consequence, to the low heat transfer resis- 

tance from the bath to the internal wall of the coil. This boundary 

condition was validated comparing temperatures measured at the 

wall of the coil (two positions) and at the oil bath. The relative dif- 

ference was never higher than  4%. 

The experimental rig was validated calculating, with experi- 

mental data, both sides of the energy balance equation applied to 

the cooling of the bath, by water flowing in the coil, in unsteady 

conditions: 

 

between 80 and 30 °C. The relative uncertainty of these experi- 

ments is 4.76%. 

 
2.2. Characterization of the fluids 

 
The Newtonian fluids were aqueous solutions of glycerol of 25%, 

36%, 43%, 59% and 78% (w/w) and the non-Newtonian fluids aque- 

ous solutions of carboxymethylcellulose (CMC) of 0.1%, 0.2%, 0.3%, 

1.4 %  and  0.6%  (w/w),  with  molar  mass  3 x 105 kg kmol-1(grade 

7H4C  from  Hercules),  and  aqueous  solutions  of  xanthan  gum 

(XG) of 0.1% and 0.2% (w/w), with molar mass 2 x 106 kg kmol-1 

(grade G1253 from Sigma-Aldrich).The values of the physical prop- 

erties of the glycerol solutions were obtained in the literature and 

the  viscosity  of  the  solutions  was  experimentally  obtained  in  a 

rotational viscometer. The physical properties of the non-Newto- 

nian  solutions,  except  the  rheological  properties,  were  taken  as 

identical to those of pure water (Pinho and Coelho [22], Rohsenow 

et al. [23] and Semmar et al. [24]). 

 
2.2.1. Rheological characterization of the non-Newtonian  fluids 

The viscous and elastic components of the non-Newtonian solu- 

tions were characterized in a cutting edge rheometer, trademark 

PHYSICA model MCR301, and the geometry used was that of 

cone-plate. The viscometric viscosity was determined, as a func- 

tion of the shear rate, through steady state shear tests and the elas- 

  
tic  component  through  first  normal  stress  difference,  N1, and 
through the loss (G00 ) and storage (G0 ) modules, these obtained in 

  

where (UA)losses(Toil - Tamb) represents the heat flux lost to the ambi- 

ent air. 

oscillation tests (small amplitude oscillatory shear tests (SAOS)). 

For the elastic component, tests in a capillary break-up rheometer, 

trademark Haake CaBER 1 Thermo Scientific, were also performed. 
The rheological tests were performed at 20, 25, 30, 35, 40 and 

Previously, the global heat transfer coefficient from the oil  to 45 °C,  according  to  the  range  of  the  mean  temperature  (T ) of 
the ambient air ((UA)losses) was experimentally determined, in un- 

steady state experiments: the oil was heated until a pre-defined 

temperature and, afterwards, was cooled by the ambient air, i.e., 

without any cooling fluid flowing inside the coil. 

Fig. 2 shows the results of the experimental rig   validation. 

m 

the fluids flowing in the coil. To have additional rheological data, 

between these temperatures, it was applied the method of reduced 

variables, described by Bird et al. [25]. In this method, one of the 

experimental data curve is chosen to be the master curve (data 
at  a  temperature designated, from  now  on,  by reference tempera- 

To obtain the film heat transfer coefficient from the oil to  the ture, T ). The factor that allows the overlapping of the other curves 
coil, hoc = f (Toil), some experiments were performed, also in 

unsteady conditions. The experiments were similar to those de- 

scribed above, but, this time, with water at high flow rates flowing 

inside the coil. In these flow conditions, the dominant thermal 

resistance was that between the oil and the wall, i.e., any increase 
in the water flow rate did not induce any effect in the overall heat 

ref 

with the master curve is called the shift factor, aT. For each concen- 

tration, this shift factor is function of the temperature and is calcu- 

lated, supposing negligible effect of the temperature in the density, 

by: 

transfer  coefficient.  For   each  experiment,   the  oil   was   cooling 
 

 
 

where go is the viscometric viscosity at zero shear rate for temper- 

atures T and Tref, respectively. 

According to Bird et al. [25], the shift factor is related with the 

temperature  by  Arrhenius equation: 
 
 

 

where DH is the activation energy and R the ideal gas   constant. 

According to the reduced variables method, the reduced shear 

rate, c_  r , is given by: 

  

and, once more supposing the density of the solutions independent 

of the temperature, the reduced viscometric viscosity, gr, is given 

by: 

 
 

 
Fig. 2. Results of the experimental energy balance, Eq. (14), for rig validation; the 

solid line is at 45°. 

 

According to Metzner and Reed [21], for fluids that follow the power 

law, the reduced viscometric viscosity is given   by: 



r 

r 

 

 

 
  

 

 

Figs. 3 and 4 present the master curves and the fitting curves of the 

power law model, for all solutions of CMC and XG. Fig. 5 shows, for 

the solution 0.2% XG, the influence of the temperature on the rheo- 

logical proprieties according to Arrhenius equation, Eq. (16). 

According to the figures, the fluids studied exhibit shear thinning 

behavior. The shear rates values, v/di, of the fluids flowing in the 

helical coil were in the range where the power law model fits well 

the experimental data. 

Table 4 shows, for all the solutions studied, the power law 

parameters, n and K, for 20 and 40 °C, the shear rate ranges where 

the parameters are valid and the activation energy   values. 

The reduced variables method can also be applied to the loss 

and storage modules: 

  
 

   

 
 Fig.   5.  Influence   of   the   temperature   on   the   rheological   proprieties   given   by 

Arrhenius equation for 0.2% (w/w) XG solution (slope DHR-1
). 

 
Table 4 

Consistency and behavior indexes and activation energy for the solutions of CMC and 

XG. 
 

 Solutions 

(%)(w/w) 

K a 20 °C 

(Pa s
n
) 

K a 40 °C 

(Pa s
n
) 

n Range of c_ 

(s
-1

) 

DHR-1
 

(K) 

CMC 0.1 0.008 0.004 0.90 100–2000 2977 

 0.2 0.082 0.045 0.70 100–4000 2933 

 0.3 0.189 0.109 0.63 300–4000 2956 

 0.4 0.376 0.227 0.58 100–4000 3057 

 0.6 1.005 0.615 0.52 100–4000 3137 

XG 0.1 0.149 0.111 0.48 2–800 4135 

 0.2 0.678 0.498 0.34 2–700 5269 

 
 

G0 0   

r  
 
 
 
 
 

Fig. 3. Reduced viscometric viscosity (gr) vs. reduced shear rate (c_ r ) (master curves) 

for solutions 0.1%, 0.2%, 0.3%, 0.4%, and 0.6% CMC at Tref and also the fitting curves of 

the power law  model. 

Figs. 6 and 7 show the evolution of the reduced storage module, G0 
, 

and of the reduced loss module, G00 
, with the reduced angular fre- 

quency, xr, for 0.4% (w/w) CMC and 0.2% (w/w) XG solutions and 

also measurement equipment limits  (baselines). 

The relaxation time of the fluid, k, was the parameter used, in 

this  work,  to  compare  the  elastic  component  of  the  fluids.  The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Reduced viscometric viscosity (gr) vs. reduced shear rate (c_ r Þ) (master 

curves) for solutions 0.1 and 0.2% XG at Tref and also the fitting curves of the power 

law model. 

 

Fig.  6.  Reduced  loss  (G0 0 
r)  and  reduced  storage  (G0 

r)  modules  vs.  reduced  angular 

frequency (xr) from oscillatory tests, for the solution 0.4% (w/w) CMC at Tref. 



 

of the solutions. Furthermore the relaxation times obtained with 

CaBER method are between 30 and 200 times lower than those ob- 

tained by SAOS method. Coelho and Pinho [26] used the same car- 

boxymethylcellulose (CMC) with identical solute concentrations, 

0.1%, 0.2%, 0.3% and 0.4% (w/w) and performed creep tests to deter- 

mine the relaxation times. Comparing their results with the pres- 

ent results obtained by SAOS method (Table 5), it can be 

observed a good accordance. Like Cavadas et al. [27] it was found 

a large dispersion on results of the first normal stress difference 

(N1). 

2.3. Experimental conditions 
 
 
 
 
 
 
 
 

Fig.  7.  Reduced  loss  (G0 0 )  and  reduced  storage  (G0 )  modules  vs.  reduced  angular 

frequency (xr), from oscillatory tests, for the solution 0.2% XG at Tref. 

 

relaxation time allows the calculation of the Weissenberg dimen- 

sionless number, Wi, which represents the ratio between elastic 

and viscous forces: 

 

The value of the critical Reynolds number, Rec, used to define 

the transition from laminar to turbulent regime inside the coil 

was 6240, according to Ito [28]. 

Table 6 shows the ranges of Reynolds, Dean, Prandtl and Helical 

numbers  for  the  different  glycerol  solutions  studied.  For  all  the 

conditions, the minimum (m) and maximum (M) heat fluxes be- 

tween the oil and the flowing glycerol solutions were, respectively, 

67 and 130 kW m-2. 

For the CMC and XG solutions, the range of the generalized Rey- 

nolds, Reg, modified Dean, De(g), modified Prandtl, Pr(g),Prandtl, Pr⁄, 

(used  by  Hsu  and  Patankar  [19]),  Péclet,  Pe,  Graetz,  Gz,  and 

Wissenberg,  Wi,  numbers  are  presented  in  Tables  7  and  8.  Also, 

 in Tables 7 and 8, it is represented the elasticity number, El, which 

is the ratio between Weissenberg and Reynolds numbers. The  elas- 

Oscillation tests, in small amplitude oscillatory shear mode (SAOS), 

were performed to obtain G0 and G00 . To obtain the relaxation time, 

it was followed the approach described by Bird et al. [25], where: 

tic number gives the ratio between elastic and inertial forces and it 

is constant for a given fluid and geometry, when the density and 

the viscometric viscosity of the solutions are independent of the 

temperature.  The  Weissenberg  number  was  calculated  with  the 
relaxation time obtained in SAOS method. For the CMC   solutions, 

 
  

 

the minimum (m) and maximum (M) heat fluxes between the oil 

In this approach, G0 and G00 are fitted, with N modes, according to 

the Maxwell model. This model combines the viscous and the elas- 

tic components of the fluid. The relaxation time is obtained from: 

and  the  solution  were,  respectively,  2.5  and  11 kW m-2   and  for 

the XG solutions, 4 and 8 kW m-2. 

Table 6 
Range of Reynolds, Dean, Prandtl and Helical numbers used for the glycerol solutions. 

 
Glycerol solutions % (w/w) 78 59 43 36 25 

 

  

 

where gk and kk are the viscosity coefficient and the relaxation time, 

respectively, of the Maxwell model. 

The relaxation time was also determined using the first normal 

stress difference, N1. The equation used was that of Bird et al. [25]: 

 

 

 

 
 

 

 

 

 

Table 7 
Ranges  of  generalized  Reynolds,  modified  Dean,  Péclet,  Graetz,  modified Prandtl, 

 
 Prandtl used by Hsu and Patankar [19], Weissenberg and elasticity numbers for the 

CMC solutions. 
 

Table 5 shows the relaxation times, obtained     in this work, by 
Solutions of CMC % (w/w) 0.1 0.2 0.3 0.4 0.6 

oscillation tests (SAOS) and capillary break-up tests ( 
approaches described in Bird et al. [25]. It was foun 

CaBER), both 
d from those Reg m 546 656 101 26 41 

   M 2828 3004 1384 1035 536 

methods that the relaxation time increases with the concentration De(g) m 88 106 16 4 7 

   M 458 487 224 168 87 
Table 5 

 Pe m 10396 42355 26433 47848 10496 
Relaxation time for CMC and XG solutions at 25 °C. 

  M 53270 106361 80063 79906 63566 

CMC XG Gz m 7.5 31 23 3.8 7.5 

 
Solutions (%) (w/w) 0.1    0.2 0.3 0.4 0.6 

 
0.1 0.2  M 38 76 46 57 46 

Relaxation time k (ms) – 170 340 475 1086 2500 4400 
Pr(g) m 

M 

17 

20 

35 

48 

57 

104 

77 

203 

119 

261 
(SAOS)       Pr

⁄
 m 21 62 114 169 292 

Relaxation time k (ms) 4.7    4.9 5.1 8.9 16.0 12.5 26.0  M 24 85 208 445 643 
(CaBER)       Wi m 32 320 200 136 656 

Relaxation time k (ms) 64 162 346 488 – – – M 232 1176 1960 2744 4472 
Coelho and Pinho [26]     El – 0.1 0.4 1.6 3.3 8.8 

 

 

Re m 91 195 423 547 1189 

 M 210 1553 2260 4557 6293 

De m 15 32 69 89 193 

 M 34 252 366 739 1020 

Pr m 160 39 20 14 10 

 M 353 75 32 22 16 

He m 15 32 69 89 124 

 M 34 257 366 739 1020 

 



p 

 

Table 8 

Ranges of generalized Reynolds, modified Dean, Péclet, Graetz, modified Prandtl, 

Prandtl used by Hsu and Patankar [19], Weissenberg and elasticity numbers for the 

XG solutions. 

The overall resistance to the heat transferred between the oil 

and the fluid circulating inside the coil (1/UA), has three 

contributions: 
 

 

     Solutions of XG % (w/w) 0.1 0.2   
  

Reg m 369 351 

M 1976 2191 

  

De(g) m 60 57 

M 320 355 

Pe m 10107 10274 

M 36916 52251 

Gz m 7 7 

M 27 38 

Pr(g) m 19 24 

M 27 44 

Pr
⁄ 

m 49  81 

M 72 177 

Wi m 1000 1824 

where xcoil is the wall thickness of the tube coil, kcopper the thermal 

conductivity of the copper, Ai , Ao and Am ln are, respectively, the 

internal, external and mean logarithmic areas of the tube, hic the 

heat transfer film coefficient between the  inner  wall  of  the coil 

and the fluid flowing in the coil and hoc the heat transfer film coef- 

ficient between the oil and the outer wall of the coil. 

The hic data will be presented in the form of Nusselt number de- 

fined as 

M 7080 19688 

El – 3.6 9.8 

  

The mean temperature, between inlet and outlet, of the fluids 

flowing inside the coil ranged between 20 and 45 °C. The physical 

properties of the fluids were determined at the mean   temperature. 

The fluid properties were determined at the mean temperature, 

Tm, between the temperature of the fluid at entrance, Te, and exit, 

Ts, of the coil, 

For the calculation of the generalized Reynolds number, Reg,   mod- 

ified Prandtl number, Pr(g), and Prandtl number, Pr⁄, the viscomet- 
  

ric viscosity was calculated at the mean temperature by the 

method of reduced properties previously described: 
dn    2-n    T 

According to Nigam et al. [20], at the coil inlet, the velocity and 

temperature profiles are in development along a distance equal to 

30 diameters of the tube, i.e., 18% of the total length of the coil. This Reg ¼ i v    q ref  n 1þ3n   n 
8n-1T distance is  lower than in straight tubes, since the profiles     suffer, 

 

which is a combination of Eqs. (6), (18), and (19); 

before stabilization, cyclic oscillations around the final state (Ni- 

gam et al. [20]). Along the experimental data treatment, these inlet 

    effects were not consider, i.e., the values obtained are for hypothet- 

 
 

  

 ic developed profiles from the inlet to the outlet of the coil. 

which is a combination of Eqs. (10), (18), and (19); 
2.5. Uncertainty analysis of the results 

   The relative uncertainties of the experimental hic values for 

Newtonian and non-Newtonian fluids are presented in Table 9. 

 

which is a combination of Eqs. (11), (18), and (19) but without 

The values of the relative uncertainties are, in, accordance to the 

3nþ1  n n-1 values reported in the literature, which are around of 25% (Cole- 
ð 4n   Þ  8 . 

The dimensionless numbers presented in Tables 6–8 were ob- 

tained from 350 different experiments. 

 
2.4. Calculation method for Nusselt number 

 
The energy balance equation to the fluid circulating inside the 

coil is: 

man  and  Steele  [29]).  A  further  explanation  is  given  in       the 

Appendix. 

 

3. Results and discussion 

 
3.1. Newtonian fluids 

 

 

where DPV_     is the heat power generated by  friction. 

 To explain the Nusselt number data in helical coils, it should be 

stressed that for Newtonian fluids circulating in a straight tube, 

fully developed laminar flow and constant heat flux boundary   con- 

In  addition,  the  project  equation  to  the  heat  transferred be- 

tween the oil and the fluid circulating inside the coil is: 

  

Matching Eqs. (31) and (32) one   obtains: 

  

where U is the overall coefficient of heat transfer between the oil 

and the fluid flowing inside the coil, A the heat transfer area and 

DTln  the logarithmic mean temperature difference given   by: 

dition, Nusselt  number is 4.36  for  Prandtl numbers  greater  than 

 

 
Table 9 

Relative uncertainties of experimental hic  for glycerol, CMC and XG   solutions. 

Solution concentration (%) (w/w)  Relative uncertainty (%) 

Glycerol 78  13 

59 19 

43 21 

36 25 

25 23 
CMC 0.1 27 

  

 0.2 36 

0.3 39 

0.4 20 

The measured values of the flow, pressure drop, oil temperature 

and inlet and outlet temperatures of the fluid flowing in the coil are 

required to determine the value of  UA. 

0.6 22 

XG 0.1 23 

0.2 20 



 
0.6, while for constant wall temperature boundary condition, Nus- 

selt number is 3.66 (Incropera and DeWitt   [30]). 

Fig. 8 shows Nusselt number experimental data for all the glyc- 

erol solutions (78%, 59%, 43%, 36% and 2 5% (w/w)) as a function of 

the Dean number. First of all, all the values are much higher than 

that in a straight tube; the mixture is higher, due to the Dean vor- 

tices and the heat flux transferred increases. The figure also shows 

an increase of the Nusselt number as the Dean number increases 

and, for a given Dean number, the Nusselt number also increases 

as the Prandtl number increases. 

In the literature, several studies (Mori and Nakayama [3] Jans- 

sen and Hoogendoorn [12], refer the similarity between the results 

obtained with both boundary conditions: constant wall tempera- 

ture and constant heat flux. Table 10 presents the mean and stan- 

dard deviations, of the relative difference between the Nusselt 

numbers obtained in this study (constant wall temperature) and 

those obtained through expressions cited in the literature (the 

boundary conditions are there specified). Based on the mean and 

standard deviations, it is not evident an influence of the boundary 

condition on the Nusselt number. 

 
In Figs. 9 and 10, the experimental data are compared, respec- 

tively, with data from Janssen and  Hoogendoorn  [12]  and from 

Xin and Ebadian [14]. 

The expression of Janssen and Hoogendoorn [12] (Fig. 9), for 

both constant wall temperature and constant heat flux, fits well 

the results of this work, with an average deviation of 15%. How- 

ever, the upper limit of the Dean number range (830) of Janssen 

and Hoogendoorn is lower than that in this   study. 

The experimental equation of Xin and Ebadian [14] (Fig. 10), is 

the one that better fits the experimental results of the present 

study. Xin and Ebadian worked at constant wall temperature, like 

we did. The validity conditions of the equation, regarding the range 

of the Dean number and curvature ratios, are also similar, but the 

upper limit of the Prandtl number is 175 while in this work is 353. 

In spite of this good concordance, and in order to compare Newto- 

nian and non-Newtonian data, it was fitted to the experimental 

data of this work an equation with a similar functionality to that 

of Xin and Ebadian. The fitted equation  is: 
 

  

This equation will be designated, from now on, by Modified Xin and 

Ebadian Correlation (MXEC) and is valid for laminar fully developed 

flow inside helical coils, for the boundary condition of constant wall 

temperature, and for 15 < De < 1020, 10 < Pr < 353, di/dc = 0.0263, 

p = 0.01134 m and di  = 0.004575 m. 

It should be stressed that, the uncertainty of the experimental 

results, in the present work (Table 9) and in those from literature 

(most of the times not referred explicitly), can explain, and be 

responsible by the  differences  found  between  the  results 

(Table 10). 

 

3.2. Non-Newtonian fluids 

 
To explain the results of the Nusselt numbers in helical coils, it 

should be stressed that for non-Newtonian fluids flowing in a 

straight tube, in fully developed laminar flow and constant heat 

flux boundary condition, the Nusselt number, Nus, can be obtained 

with the following theoretical expression (Pinho and Coelho [22]): 

Fig. 8. Experimental Nusselt number (Nuc) vs. Dean number (De) for all the glycerol 

solutions. 

  

 
 
 

Table 10 

Mean and standard deviation of the relative difference between experimental Nusselt 

number data for glycerol solutions and data from the correlations in the literature. 

 

This expression was obtained considering constant physical proper- 

ties and purely viscous fluids following power   law. 

 

 

 

Mori and Nakayama [3] (constant wall temperature 

and constant heat flux) 

 

Mean ± standard 

deviation(%) 

51.8 ± 20.0 

Schmidt [5] (constant wall temperature) 23.9 ± 21.7 

Dravid et al. [6] (constant heat flux) 20.0 ± 12.5 

Akiyama and Cheng [7] (constant heat flux) 16.3 ± 15.8 

Akiyama and Cheng [8] (constant wall temperature)        34.1 ± 21.0 

Olivier and Asghar [11] (4 < De < 60) (constant wall 

temperature) 

Olivier and Asghar [11] (60 < De < 2000) (constant wall 

temperature) 

Janssen and Hoogendoorn [12] (De < 20) (constant wall 

temperature and heat flux) 

Janssen and Hoogendoorn [12] (20 < De < 100) 

(constant wall temperature and heat flux) 

Janssen and Hoogendoorn [12] (100 < De < 830) 

(constant wall temperature and heat flux) 

43.2 ± 16.6 

 
42.2 ± 28.3 

 
8.2 ± 7.0 

 
24.5 ± 15.2 

 
12.0 ± 12.3 

Manlapaz and Churchill [13] (constant heat flux) 23.2 ± 28.2 

Manlapaz and Churchill [13] (constant wall 

temperature) 

33.9 ± 32.2 

Xin and Ebadian [14] (constant wall temperature) 12.3 ± 7.7 Fig.  9.  Nusselt  number  (Nuc)  vs.  Re
0.43

Pr
1/6   

–  comparison  between  data from 

   glycerol experiments and data from Janssen and Hoogendoorn [12]). 



 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Nusselt number (Nuc) vs. Dean number (De) – comparison between data 

from glycerol experiments and data from Xin and Ebadian [14]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Nusselt number (Nuc) vs. Dean number (De(g)) for the non-Newtonian 

fluids CMC and XG experiments – comparison between experimental data and 

results obtained from correlation for glycerol solutions (MXEC). 

 

 

For the condition of constant wall temperature, once more 

according  to  Pinho  and  Coelho  [22],  the  values  are  3.66,   3.95, 

4.18 and 5.80 respectively for the behavior index of, 1, 0.5, 0.33 

and 0. 

For both boundary conditions, the greater is the behavior index, 

the lower is the Nusselt number. For a straight tube, the literature 

states that the results presented for both boundary conditions are 

valid either for purely viscous fluids as for viscoelastic fluids (Pinho 

and  Coelho [22]). 

Rajasekharan et al. [17,18], Olivier and Asghar [11], Hsu and 

Patankar [19] and Nigam et al. [20]) performed studies with non- 

Newtonian fluids, for similar conditions to those used in this  work. 

Hsu and Patankar [19] studied theoretically the heat transfer for 

fluids  that  follow  the  power  law,  for  the  boundary  condition  of 

constant  heat  flux.  These  authors  found  that  for  the  same  Dean 

number  (De(g))  and  Prandtl  number  (Pr⁄),  the  Nusselt  numbers 

for shear thinning fluids are lower than those for Newtonian fluids. 

In order to confirm this statement, it was represented the Nusselt 

number as a function of the generalized Dean number, as shown in 

Fig. 11. The Nusselt numbers for the glycerol solutions were ob- 

tained from equation MXEC. It can be seen, with the help of Ta- 

ble 11, that for the same ranges of Prandtl (Pr⁄) and Dean (De(g)) 

numbers,  the  Nusselt  numbers  of  the  solutions  0.1%,  0.2%,0.3% 

and 0.4% of CMC are slightly higher than those of the Newtonian 

fluids. For the solution 0.6% of CMC, it is difficult to see the trend, 

because the upper limit of the Prandtl number is greater than the 

upper limit for the 78% glycerol solution. According to our results, 

it can be said that the higher velocity gradients near the tube wall, 

characteristic of the shear thinning fluids, potentiate the mixing ef- 

fect promoted by the Dean cells. 

The  Nusselt  numbers  of  the  0.1%  and  0.2%  XG  solutions,  for 

identical ranges of Dean (De(g)) and Prandtl (Pr⁄) numbers, are sig- 

nificantly lower than those of the glycerol solutions. This finding 

stresses  the  importance  of  the  elasticity  of  the  fluid,  in  the  flow 

pattern,  and,  by  consequence,  in  the  heat  transfer  coefficients. 

The  elasticity  tends  to  overlap  the  viscous  effect  on  the  Nusselt 

number promoted by the shear thinning behavior. The degree of 

viscoelasticity of the fluids studied can be seen in Table 5, relaxa- 

tion times, and in Tables 7 and 8, Weissenberg numbers. 

Nigam et al. [20] studied, numerically, the heat transfer in shear 

thinning fluids in helical coils and obtained, as shown in Tables 1 

and 2, Nusselt number values for Newtonian fluids similar to those 

of Hsu and Patankar [19] and for shear thinning fluids values 

slightly lower than those related in [19]. For the shear thinning flu- 

ids, the results of Nigam are close to those obtained in this work 

despite the fact that they are slightly lower than those for Newto- 

nian fluids (Tables 1 and  2). 

Fig. 12 shows the experimental results of Nusselt number as a 

function of the Graetz number (includes the product between Rey- 

nolds and Prandtl numbers), obtained with the aqueous solutions 

of CMC and XG and also the data from Rajasekharan et al. 

[18].The CMC solutions data of the present study are slightly high- 

er, for the same Graetz number, than those given by the expression 

of Rajasekharan et al. [17,18]. However the functionality is very 

similar, i.e., the Graetz number seems to be the correct, and unique, 

dimensionless number that affects the Nusselt number for shear 

thinning fluids (geometric numbers are not in study). The experi- 

mental data for 0.2% XG solution are lower, for the same Graetz 

number and seems to follow a different correlation, i.e., once more, 

the elastic component seems to affect the heat transfer coefficient. 

Fig. 13 shows the Nusselt experimental results and the data 

from Olivier and Asghar [11] as function of GZ0.33 (1 + a (De+)b) 

(d/dw)0.14  – the coefficients a and b are in Table 2. The fit equation 

of Olivier and Asghar [11] was obtained performing experiments 

with a viscoelastic solution, PAA. The results are lower than those 

of this work, especially for the CMC solutions. However, the values 

for the 0.2% XG solution seem to follow the trend of Olivier and 

Asghar‘ equation. 

 
 

Table 11 

Mean and standard deviation of – Prandtl, modified Prandtl and Prandtl used by Hsu and Patankar [19] numbers for the glycerol, CMC and XG solutions. 
 

Pr Solutions of glycerol % (w/w) 78 59 43 36 25 

 Mean ± standard deviation 278 ± 59 61 ± 10 28 ± 3 19 ± 2 14 ± 1 

Pr
⁄

 Solutions of CMC %  (w/w) 0.1 0.2 0.3 0.4 0.6 

 Mean ± standard deviation 23 ± 1.2 71 ± 6.2 145 ± 27 238 ± 71 403 ± 102 

Pr
⁄

 Solutions of XG %   (w/w) 0.1 0.2    
 Mean ± standard deviation 58 ± 8 116 ± 32    



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12. Nusselt number (Nuc) vs. Graetz number (Gz) for non-Newtonian fluids 

(CMC and XG) experiments – comparison between experimental data and results 

from Rajasekharan et al. [18]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Experimental Nusselt number vs. Nusselt number obtained with Eq. (39) 

for glycerol, CMC and XG solutions and lines of deviation of 30% and line of 45°. 

 

 
A correlation, in some way based in that of Olivier and Asghar 

[11], was fitted to the experimental data of the present work. This 

correlation, Eq. (40), expresses the dependence of Nusselt number 

in Dean and Péclet numbers and also in Weissenberg number. 
 

  

 

 

This equation is valid for constant wall temperature and was obtain 

in the following conditions:  glycerol  solutions  (15 < De < 1020, 

10 < Pr < 352); CMC and XG solutions with index behavior between 

0.34  and  0.90  (4 < De(g)  < 487,  17<  Pr(g)    <203,  32<  Wi < 19700); 

di/dc = 0.0263, p = 0.01134 m and di = 0.004575 m. The accuracy of 

the fit equation can be seen in Figure 14 where are represented 

the experimental results and data from Eq. (40). The maximum rel- 

ative deviation is about 30 %, a value of the order of the maximum 

experimental error. 

 
 

 

Fig. 13. Nusselt number (Nuc) vs. GZ
0.33 

(1 + a (De
+
)

b
)(d/dw)

0.14 
data for non- 

Newtonian fluids CMC and XG experiments – comparison between experimental 

data and results obtained from Olivier and Asghar [11]). 

 

 

Table 12 shows the mean and the standard deviation of the rel- 

ative difference between the experimental  Nusselt  number data, 

for CMC and XG solutions, and data from Rajasekharan et al. [18] 

and from Olivier and Asghar [11]   respectively. 

The average uncertainty of the results for non-Newtonian fluids 

varied, as can be seen in Table 9, between 20% and 39%. This uncer- 

tainty is not very high for experimental work concerning heat 

transfer, but may turn difficult the comparison with data from 

literature. 

4. Conclusions 

 
To calculate the Nusselt number for Newtonian fluids flowing in 

a helical coil, one can use, with accuracy, the correlation of Janssen 

and Hoogendoorn [12], valid for boundary conditions of constant 

heat flux and constant wall temperature and also that of Xin and 

Ebadian [14] valid for constant wall   temperature. 

From the data obtained with non-Newtonian fluids flowing in a 

helical coil with constant wall temperature, the most important 

conclusions are: 

 
- Nusselt numbers of the CMC solutions (shear thinning fluids 

with low elastic component) were reasonably well represented 

by the correlation of Rajasekharan et al. [18]; 

 
 

Table 12 

Mean and standard deviation between experimental Nusselt number data for CMC and XG solutions and data obtained by Rajasekharan et al. [18] and by Olivier and Asghar [11]. 
 

 

Mean ± standard  deviation (%) 
 

CMC solution concentration (%) (w/w)  0.1 0.2 0.3 0.4 0.6 

 Rajasekharan et al. [18] 38 ± 27 4 ±4  13 ±6  34 ± 14 32±5  

 Olivier and Asghar  [11] 56 ± 21 46 ± 6 70 ± 5 86 ± 6 82 ± 3 

XG solution concentration (%) (w/w)  0.1 0.2  
 Rajasekharan et al. [18] 21 ± 17 16 ± 11 

 Olivier and Asghar  [11] 44 ± 17 23 ± 21 



2 

2 

 

- Nusselt numbers of the CMC solutions were, on average, slightly 

higher than those of the Newtonian fluids for the same Prandtl, 

Pr⁄, and generalized Dean numbers, De(g); 

- the viscous component of this shear thinning polymer tends to 

potentiate the mixing effect of the Dean cells; 

- Nusselt numbers of the XG solutions, fluid with elastic behavior, 

are significantly lower than those of the Newtonian solutions, 

same Prandtl, Pr⁄, and generalized Dean numbers, De(g); 

- the elastic component of the polymer tends to diminish the 

mixing effect of the Dean cells. 

 
A global correlation for Nusselt number as a function of    Péclet, 

The values of the relative uncertainties associated to the heat 

transfer film coefficients between the inner wall of the coil and 

the fluids, hic, are shown in Table 9. The method of calculating of 

the relative uncertainties  of  hic  is  described in  Eqs. sections  A 1, 

A 2 and A 3. 

 
A 1 - Uncertainties of external, internal and mean logarithmic 

lateral areas and thickness of the coil 

 
The reduction equations for the calculation of the uncertainties 

of Ao, Ai, Amln  and xcoil  are: 

generalized Dean and Weissenberg numbers, for all Newtonian and 

non-Newtonian solutions studied is presented (Eq. (40)).  
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Appendix – Uncertainty analysis of heat transfer film 

  
i  

coefficient between the inner wall of the coil and the fluid 

flowing in the coil 

  

 
The equation to obtain the uncertainty of a result, with a   confi- 

The corresponding uncertainties are given  by: 
  

dence level of 95% and assuming that there are no correlated bias 

and precision errors [29], is: 
 

 

    

where U(R), B(R) e P(R) are, respectively, the total uncertainty (or 

uncertainty),  the bias error  and the precision error associated     to 

  

the calculation of the result  (R). 2   

 
is: 

If the reduction equation to obtain a given experimental result  
 

\
  

   
  

where Xj are the variables whose uncertainty contributes to the 

uncertainty of the result, then the uncertainty of the result, is given 

by: 

 
 

 

 

      
U(do), U(Lcoil) and U(di) uncertainty  values  are  in  Table  3. 

Table A1 shows the values of the relative uncertainties of Ao, Ai, 
Amln and xcoil.  

 
   

 
  

A 2 – Uncertainty associated to the heat transfer film coefficient 

The reduction equation of the heat transfer film coefficient be- 

tween the inner wall of the coil and the fluid flowing in the coil, hic, 

is: 

between the oil and the outer wall of the coil, U(hoc) 

 
The reduction equation for the calculation of the uncertainty 

associated to hoc  = f (Toil) is: 

 
  

  

 

The equation which allows the calculus of the uncertainty of the   

respective result, U(hic), is: where, ðUAÞhoc
 is the global heat transfer coefficient from the oil   to 

 
 

 

   the water in the coil times the lateral area of the   coil. 

\ 
 

 
  

    
 

 Table A1 

Relative uncertainties of Ao, Ai, Am ln  and xcoil.   

  
     Variable  Relative uncertainty (%)   

 Ao 0.8 

 
  

Ai 1.1 

It is assumed that the uncertainty of the kcopper was negligible in 

relation to the others uncertainties. 

Amln 0.7 

xcoil 3.9 



ð 

The equation for the calculation of the uncertainty U(hoc) is: 

The data acquisition system was composed by an analogic/dig- 

ital board (A/D) with 14 bits of resolution and with Vcalmax of 0.8 V. 
 

   
 

! 
  According  to  Coleman  and  Steele  [29],  the  signal  digitalization 

 
  

 
 
 uncertainty is equal to half of the least bit with significance    (LSB) 

 
 

  (1 LSB = 10/2c, where c is the bits number). The bias error of the 

 
 temperature measurement equipment (Tmeter) was   considered 

 
 

 
equal to 0.4% of the read value, according to the manufacturer 

specifications. 

  Asan example, it is presented the calculations for the tempera- 

ture of the oil at 80  °C. 

where P(L) is the precision error associated with the linear regres- 

sion of hoc  = f (Toil). 

It is assumed that the uncertainty of the kcopper was negligible in 

relation to the other uncertainties. The uncertainties of Ao, Amln and 

xcoil have been calculated in Section A 1. The uncertainties of the 

 
  

remaining variables are described in A 2.1 and A 2.2. The maximum 
relative uncertainty of hoc = f (Toil) is 4.76%. 

 
  

 
 

A 2.1 – Uncertainty U
 

ðUAÞhoc 

 
   

 
 

 
 

 

In this case the fluid flowing in the coil was water. The reduc- 

tion equation for the calculation of the uncertainty U
   

UAÞhoc 

  
is: 

  

 
    

 
 

 

  

 

 
The equation for the calculation of the uncertainty of an     

   

 

iment UððUAÞhoc 
Þ is:  

 
 

   

 
  

 
 

 

 
 

 
_  

 
 

 
 

  
 

 
where SV_                    is  the volumetric  flow  rate standard deviation, N  is  the 

 
\

 
 number of readings of the volumetric flow rate (N = 60) and ts is 

the t student distribution. 

It is assumed that the uncertainty of q was negligible in relation to 

the other uncertainties. 

The relative uncertainty of ðUAÞhoc    
is 3.56% and the method of 

calculating is described in A 2.1.1 and A.1.2. 

 
A 2.1.1 - Bias  error 

 

A 2.2 – Precision error of linear  regression 

 
The precision error (P(L)) of the linear regression of the function 

hoc = f(Toil) is given by: 

BððUAÞhoc 
Þ The bias error BððUAÞhoc 

Þ is given by: 
  

 
 

 
 

 
 

  
 

 
 

 

 
 
 

where a, e, b are, respectively, the slope of the line and the value   of 

hoc    when  Toil   is  zero  and  N  (=12)  is  the  number  of experiments 
 

 
  

(number of points in the linear  regression). 

 
  

 
 

    
A 3 – Uncertainty of the heat transfer coefficient from the oil to 

The flowmeter bias error was provided by the manufacturer and 

its value is 1.2% of the read value.The general equation for the cal- 

culation of the bias errors of the temperatures B(Ts), B(Te)  and 

B(Toil))  is: 

the fluid in the coil times the lateral area of the coil, U(UA) 

 
In this case the fluids flowing in the coil are the solutions of 

glycerol, CMC and XG. The reduction equation for the  calculation 

of the uncertainty  is: "
  

 
  

 
 

   
 

 
 

   

where  B(A/D)  and  B(Tmeter)  are,  respectively,  the  data acquisition 
 

system and temperature meter bias errors.  

The equation to calculate the uncertainty U  UA    is: 



 

Table A2 

Uncertainities of UA for the glycerol  solutions. 

The mean values of each of the variables in Eq. (A 29) are the result 

of two hundred experiments performed in steady state. So, it is nec- 

Glycerol solutions 

(%) (w/w) 

U(UA)/UA (%) essary to calculate the precision error of each variable. The method 

to calculate them is described in A 2.1.2. The procedure involved 

78 2.4 

59 2.2 

43 2.4 

36 2.2 

25 2.1 

 

 

 
 

Table A3 

Uncertainities of UA for the CMC 

solutions. 

was carried out for all the working fluids and for different experi- 

mental conditions (oil temperature and volumetric flow   rate). 
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