67 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Sichtbarkeit der Geschichte

    Get PDF
    Historische Bildforschung stellt ein Arbeitsgebiet dar, in dem sich Geistes- und Sozialwissenschaftler/innen unterschiedlichster Spezialisierung aufgrund ihres Interesses am Kulturobjekt "Bild" begegnen können. Da das Netzwerk für Kunstgeschichte im H-Net HArthist und der geschichtswissenschaftliche Fachinformationsdienst H-Soz-u-Kult gemeinsam per Mail wohl die weltweit größte an Fragen historischer Bildforschung interessierte Öffentlichkeit erreichen, lag die Idee zu einem gemeinsamen, disziplinübergreifenden Publikationsprojekt nahe. Die im Historischen Forum Nr. 5 versammelten "Beiträge zu einer Historiografie der Bilder" sind Statements und Reflexionen zum Stand der Historischen Bildforschung. Sie geben einen Eindruck von der Vielfalt der wissenschaftlichen Beschäftigung; sie erheben nicht den Anspruch von empiriegesättigten Studien oder umfassenden Handbuchartikeln

    Einsatz der extrakorporalen Zirkulation (ECLS/ECMO) bei Herz- und Kreislaufversagen

    No full text
    In Germany, a remarkable increase regarding the usage of extracorporeal membrane oxygenation (ECMO) and extracorporeal life support (ECLS) systems has been observed in recent years with approximately 3000 ECLS/ECMO implantations annually since 2015. Despite the widespread use of ECLS/ECMO, evidence-based recommendations or guidelines are still lacking regarding indications, contraindications, limitations and management of ECMO/ECLS patients. Therefore in 2015, the German Society of Thoracic and Cardiovascular Surgery (GSTCVS) registered the multidisciplinary S3 guideline "Use of extracorporeal circulation (ECLS/ECMO) for cardiac and circulatory failure" to develop evidence-based recommendations for ECMO/ECLS systems according to the requirements of the Association of the Scientific Medical Societies in Germany (AWMF). Although the clinical application of ECMO/ECLS represents the main focus, the presented guideline also addresses structural and economic issues. Experts from 17 German, Austrian and Swiss scientific societies and a patients' organization, guided by the GSTCVS, completed the project in February 2021. In this report, we present a summary of the methodological concept and tables displaying the recommendations for each chapter of the guideline

    Use of extracorporeal circulation (ECLS/ECMO) for cardiac and circulatory failure –A clinical practice Guideline Level 3

    No full text
    Aims Worldwide applications of extracorporeal circulation for mechanical support in cardiac and circulatory failure, which are referred to as extracorporeal life support (ECLS) or veno-arterial extracorporeal membrane oxygenation (va-ECMO), have dramatically increased over the past decade. In spite of the expanding use and the immense medical as well as socio-economic impact of this therapeutic approach, there has been a lack of interdisciplinary recommendations considering the best available evidence for ECLS treatment. Methods and Results In a multiprofessional, interdisciplinary scientific effort of all scientific societies involved in the treatment of patients with acute cardiac and circulatory failure, the first evidence- and expert consensus-based guideline (level S3) on ECLS/ECMO therapy was developed in a structured approach under regulations of the AWMF (Association of the Scientific Medical Societies in Germany) and under use of GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria. This article presents all recommendations created by the expert panel, addressing a multitude of aspects for ECLS initiation, continuation, weaning and aftercare as well as structural and personnel requirements. Conclusions This first evidence- and expert consensus-based guideline (level S3) on ECLS/ECMO therapy should be used to apply the best available care nationwide. Beyond clinical practice advice, remaining important research aspects for future scientific efforts are formulated

    Potential for a precision measurement of solar pppp neutrinos in the Serappis Experiment

    No full text
    The Serappis (SEarch for RAre PP-neutrinos In Scintillator) project aims at a precision measurement of the flux of solar pppp neutrinos on the few-percent level. Such a measurement will be a relevant contribution to the study of solar neutrino oscillation parameters and a sensitive test of the solar luminosity constraint. The concept of Serappis relies on a small organic liquid scintillator detector (\sim20 m3^3) with excellent energy resolution (\sim2.5 % at 1 MeV), low internal background and sufficient shielding from surrounding radioactivity. This can be achieved by a minor upgrade of the OSIRIS facility at the site of the JUNO neutrino experiment in southern China. To go substantially beyond current accuracy levels for the pppp flux, an organic scintillator with ultra-low 14^{14}C levels (below 101810^{-18}) is required. The existing OSIRIS detector and JUNO infrastructure will be instrumental in identifying suitable scintillator materials, offering a unique chance for a low-budget high-precision measurement of a fundamental property of our Sun that will be otherwise hard to access
    corecore