15 research outputs found

    Hastes florais de helicônia sob deficiência de macronutrientes Flower stems postharvest characteristics of heliconia under macronutrients deficiency

    No full text
    O objetivo deste trabalho foi avaliar características pós-colheita da primeira haste floral de plantas de Heliconia psittacorum x H. spathocircinata Aristeguieta, cultivar Golden Torch, sob deficiência de macronutrientes. O experimento foi conduzido em casa de vegetação, mediante técnica do elemento faltante. As inflorescências produzidas do tratamento sob omissão de N apresentaram coloração laranja-pálido e deformação nas hastes florais. O comprimento e o diâmetro da haste floral e o comprimento da inflorescência foram reduzidos nos tratamentos com omissão de N, P ou K em até 31,23%, em relação ao tratamento completo. A massa de matéria seca e a durabilidade pós-colheita das hastes florais foram reduzidas em 67 e 38,46%, respectivamente, em ambos os tratamentos com omissão de N ou K. As deficiências desses macronutrientes reduziram, ainda, a produção de hastes florais, a partir do segundo perfilho emitido. Hastes florais com maior massa de matéria seca e diâmetro apresentaram maior durabilidade pós-colheita. O teor de carboidrato na parte subterrânea mostrou correlação positiva (0,90) com a massa de matéria seca das hastes florais. Hastes florais com maior teor de carboidratos solúveis nas folhas retardaram a emissão da inflorescência.<br>The objective of this work was to evaluate Heliconia psittacorum x H. spathocircinata Aristeguieta 'Golden Torch' first flower stem morphological and physiological characteristics as well as postharvest longevity, under macronutrients omissions. A greenhouse experiment was conducted under the technique of the lacking element. Inflorescences produced under N omission treatment showed a pale orange color and floral stem deformation. Stem length and diameter as well as inflorescence length were reduced under omission of N, P or K, down to 31.23% when compared to the complete solution treatment. Floral stem dry matter and postharvest longevity were reduced on 67% and 38.46%, respectively, on either N or K omission treatments. These nutrients omission treatments reduced floral stem production from the second shoot emitted. Greater postharvest longevity is to be found at higher floral stem diameter and dry matter. Carbohydrate ratio in underground parts presents positive correlation (0.90) with floral stem dry matter. Floral stems showing greater carbohydrate ratio on the leaves withdraw inflorescence appearance

    Antigen Processing and Presentation

    No full text

    Measurement of single-diffractive dijet production in proton–proton collisions at √s=8Te with the CMS and TOTEM experiments

    No full text
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes pp→pX and pp→Xp, i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton–proton collisions at s=8Te during a dedicated run with β∗=90m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5nb-1. The single-diffractive dijet cross section σjjpX, in the kinematic region ξ&amp;lt; 0.1 , 0.03&amp;lt;|t|&amp;lt;1Ge2, with at least two jets with transverse momentum pT&amp;gt;40Ge, and pseudorapidity | η| &amp;lt; 4.4 , is 21.7±0.9(stat)-3.3+3.0(syst)±0.9(lumi)nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ, is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range - 2.9 ≤ log 10x≤ - 1.6 , is R=(σjjpX/Δξ)/σjj=0.025±0.001(stat)±0.003(syst), where σjjpX and σjj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons. © 2020, CERN for the benefit of the CMS and TOTEM collaborations

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    No full text
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯. © 2020, The Author(s)
    corecore