357 research outputs found

    Transcriptome analysis of a cnidarian – dinoflagellate mutualism reveals complex modulation of host gene expression

    Get PDF
    BACKGROUND: Cnidarian – dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian – algal symbiosis. RESULTS: We detected statistically significant differences in host gene expression profiles between sea anemones (Anthopleura elegantissima) in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian – dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. CONCLUSION: Our data do not support the existence of symbiosis-specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian – dinoflagellate associations provides critical insights into the maintenance and regulation of the symbiosis

    A medical student elective promoting humanism, communication skills, complementary and alternative medicine and physician self-care: an evaluation of the HEART program.

    Get PDF
    ObjectiveIn 2002 the American Medical Student Association (AMSA) created a fourth-year medical student elective known as the Humanistic Elective in alternative medicine, Activism, and Reflective Transformation (HEART) that provided the opportunity for students to explore humanism in medicine, self-care, complementary and alternative medicine modalities, communication, activism, and community building in a four-week immersion experience. The educational effects of this elective, and whether it has met its stated goals, are unknown.MethodThe authors conducted a web-based, cross-sectional survey of the first eight cohorts of HEART graduates in 2010. Survey questions assessed respondents' demographics and perspectives on the educational impact of the elective. Descriptive statistics were used to characterize the sample and qualitative analyses were guided by grounded theory.ResultsOf 168 eligible alumni, 122 (73%) completed the survey. The majority were female (70%), age ≀35 (77%) years, and trained in primary care specialties (66%). Half were attendings in practice. The majority of respondents felt the elective taught professionalism (89%) and communication skills (92%) well or very well. The majority highly agreed that the elective helped them better cope with stress during residency training (80%), taught them self-care skills (75%), and improved their ability to empathize and connect with patients (71%). Qualitative analysis of the personal and professional impact of the elective identified twelve common themes with self-discovery, self-care, and collegial development/community most frequently cited.ConclusionsThe majority of HEART graduates endorse learning important skills and benefiting from the experience both personally and professionally. Aspects of the HEART curriculum may help training programs teach professionalism and improve trainee well-being

    Selfish Mitochondrial DNA Proliferates and Diversifies in Small, but not Large, Experimental Populations of Caenorhabditis briggsae

    Get PDF
    Evolutionary interactions across levels of biological organization contribute to a variety of fundamental processes including genome evolution, reproductive mode transitions, species diversiïŹcation, and extinction. Evolutionary theory predicts that so-called “selïŹsh” genetic elements will proliferate when the host effective population size (Ne) is small, but direct tests of this prediction remain few. We analyzed the evolutionary dynamics of deletion-containing mitochondrial DNA (ΔmtDNA) molecules, previously characterized as selïŹsh elements, in six different natural strains of the nematode Caenorhabditis briggsae allowed to undergo experimental evolution in a range of population sizes (N = 1, 10, 100, and 1,000) for a maximum of 50 generations. Mitochondrial DNA (mtDNA) was analyzed for replicate lineages at each ïŹve-generation time point. Ten different ΔmtDNA molecule types were observed and characterized across generations in the experimental populations. Consistent with predictions from evolutionary theory, lab lines evolved in small-population sizes (e.g., nematode N = 1) were more susceptible to accumulation of high levels of preexisting mtDNA compared with those evolved in larger populations. New ΔmtDNA elements were observed to increase in frequency and persist across time points, but almost exclusively at small population sizes. In some cases, mtDNA levels decreased across generations when population size was large (nematode N = 1,000). Different natural strains of C. briggsae varied in their susceptibilities to mtDNA accumulation, owing in part to preexisting compensatory mtDNA alleles in some strains that prevent deletion formation. This analysis directly demonstrates that the evolutionary trajectories of ΔmtDNA elements depend upon the population-genetic environments and molecular-genetic features of their hosts

    The Carnegie Supernova Project: The Low-Redshift Survey

    Full text link
    Supernovae are essential to understanding the chemical evolution of the Universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the Universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a five-year program which began in September 2004, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.Comment: 45 pages, 13 figures, 3 tables, accepted by PAS

    Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program

    Full text link
    Shifting the focus of Type Ia supernova (SN Ia) cosmology to the near-infrared (NIR) is a promising way to significantly reduce the systematic errors, as the strategy minimizes our reliance on the empirical width-luminosity relation and uncertain dust laws. Observations in the NIR are also crucial for our understanding of the origins and evolution of these events, further improving their cosmological utility. Any future experiments in the rest-frame NIR will require knowledge of the SN Ia NIR spectroscopic diversity, which is currently based on a small sample of observed spectra. Along with the accompanying paper, Phillips et al. (2018), we introduce the Carnegie Supernova Project-II (CSP-II), to follow up nearby SNe Ia in both the optical and the NIR. In particular, this paper focuses on the CSP-II NIR spectroscopy program, describing the survey strategy, instrumental setups, data reduction, sample characteristics, and future analyses on the data set. In collaboration with the Harvard-Smithsonian Center for Astrophysics (CfA) Supernova Group, we obtained 661 NIR spectra of 157 SNe Ia. Within this sample, 451 NIR spectra of 90 SNe Ia have corresponding CSP-II follow-up light curves. Such a sample will allow detailed studies of the NIR spectroscopic properties of SNe Ia, providing a different perspective on the properties of the unburned material, radioactive and stable nickel produced, progenitor magnetic fields, and searches for possible signatures of companion stars.Comment: 20 pages, 7 figures, accepted for publication in PAS

    Comparison of DC Bead-irinotecan and DC Bead-topotecan drug eluting beads for use in locoregional drug delivery to treat pancreatic cancer

    Get PDF
    DC Bead is a drug delivery embolisation system that can be loaded with doxorubicin or irinotecan for the treatment of a variety of liver cancers. In this study we demonstrate that the topoisomerase I inhibitor topotecan hydrochloride can be successfully loaded into the DC Bead sulfonate-modified polyvinyl alcohol hydrogel matrix, resulting in a sustained-release drug eluting bead (DEBTOP) useful for therapeutic purposes. The in vitro drug loading capacity, elution characteristics and the effects on mechanical properties of the beads are described with reference to our previous work with irinotecan hydrochloride (DEBIRI). Results showed that drug loading was faster when the solution was agitated compared to static loading and a maximum loading of ca. 40–45 mg topotecan in 1 ml hydrated beads was achievable. Loading the drug into the beads altered the size, compressibility moduli and colour of the bead. Elution was shown to be reliant on the presence of ions to perform the necessary exchange with the electrostatically bound topotecan molecules. Topotecan was shown by MTS assay to have an IC50 for human pancreatic adenocarcinoma cells (PSN-1) of 0.22 and 0.27 lM compared to 28.1 and 19.2 lM for irinotecan at 48 and 72 h, respectively. The cytotoxic efficacy of DEBTOP on PSN-1 was compared to DEBIRI. DEPTOP loaded at 6 & 30 mg ml-1, like its free drug form, was shown to be more potent than DEBIRI of comparable doses at 24, 48 & 72 h using a slightly modified MTS assay. Using a PSN-1 mouse xenograft model, DEBIRI doses of 3.3–6.6 mg were shown to be well tolerated (even with repeat administration) and effective in reducing the tumour size. DEBTOP however, was lethal after 6 days at doses of 0.83–1.2 mg but demonstrated reasonable efficacy and tolerability (again with repeat injection possible) at 0.2–0.4 mg doses. Care must therefore be taken when selecting the dose of topotecan to be loaded into DC Bead given its greater potency and potential toxicity
    • 

    corecore