934 research outputs found

    ScreenGarden: a shinyR application for fast and easy analysis of plate-based high-throughput screens

    Get PDF
    BACKGROUND: Colony growth on solid media is a simple and effective measure for high-throughput genomic experiments such as yeast two-hybrid, synthetic dosage lethality and Synthetic Physical Interaction screens. The development of robotic pinning tools has facilitated the experimental design of these assays, and different imaging software can be used to automatically measure colony sizes on plates. However, comparison to control plates and statistical data analysis is often laborious and pinning issues or plate specific growth effects can lead to the detection of false-positive growth defects. RESULTS: We have developed ScreenGarden, a shinyR application, to enable easy, quick and robust data analysis of plate-based high throughput assays. The code allows comparisons of different formats of data and different sized arrays of colonies. A comparison of ScreenGarden with previous analysis tools shows that it performs, at least, equivalently. The software can be run either via a website or offline via the RStudio program; the code is available and can be modified by expert uses to customise the analysis. CONCLUSIONS: ScreenGarden provides a simple, fast and effective tool to analyse colony growth data from genomic experiments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-04586-1

    Unifying the mechanism of mitotic exit control in a spatiotemporal logical model.

    Get PDF
    The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit

    Misregulation of cell cycle-dependent methylation of budding yeast CENP-A contributes to chromosomal instability.

    Get PDF
    Centromere (CEN) identity is specified epigenetically by specialized nucleosomes containing evolutionarily conserved CEN-specific histone H3 variant CENP-A (Cse4 in Saccharomyces cerevisiae, CENP-A in humans), which is essential for faithful chromosome segregation. However, the epigenetic mechanisms that regulate Cse4 function have not been fully defined. In this study, we show that cell cycle-dependent methylation of Cse4-R37 regulates kinetochore function and high-fidelity chromosome segregation. We generated a custom antibody that specifically recognizes methylated Cse4-R37 and showed that methylation of Cse4 is cell cycle regulated with maximum levels of methylated Cse4-R37 and its enrichment at the CEN chromatin occur in the mitotic cells. Methyl-mimic cse4-R37F mutant exhibits synthetic lethality with kinetochore mutants, reduced levels of CEN-associated kinetochore proteins and chromosome instability (CIN), suggesting that mimicking the methylation of Cse4-R37 throughout the cell cycle is detrimental to faithful chromosome segregation. Our results showed that SPOUT methyltransferase Upa1 contributes to methylation of Cse4-R37 and overexpression of UPA1 leads to CIN phenotype. In summary, our studies have defined a role for cell cycle-regulated methylation of Cse4 in high-fidelity chromosome segregation and highlight an important role of epigenetic modifications such as methylation of kinetochore proteins in preventing CIN, an important hallmark of human cancers

    Cell cycle-dependent association of polo kinase Cdc5 with CENP-A contributes to faithful chromosome segregation in budding yeast.

    Get PDF
    Evolutionarily conserved polo-like kinase, Cdc5 (Plk1 in humans), associates with kinetochores during mitosis; however, the role of cell cycle-dependent centromeric ( CEN) association of Cdc5 and its substrates that exclusively localize to the kinetochore have not been characterized. Here we report that evolutionarily conserved CEN histone H3 variant, Cse4 (CENP-A in humans), is a substrate of Cdc5, and that the cell cycle-regulated association of Cse4 with Cdc5 is required for cell growth. Cdc5 contributes to Cse4 phosphorylation in vivo and interacts with Cse4 in mitotic cells. Mass spectrometry analysis of in vitro kinase assays showed that Cdc5 phosphorylates nine serine residues clustered within the N-terminus of Cse4. Strains with cse4-9SA exhibit increased errors in chromosome segregation, reduced levels of CEN-associated Mif2 and Mcd1/Scc1 when combined with a deletion of MCM21. Moreover, the loss of Cdc5 from the CEN chromatin contributes to defects in kinetochore integrity and reduction in CEN-associated Cse4. The cell cycle-regulated association of Cdc5 with Cse4 is essential for cell viability as constitutive association of Cdc5 with Cse4 at the kinetochore leads to growth defects. In summary, our results have defined a role for Cdc5-mediated Cse4 phosphorylation in faithful chromosome segregation

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    Apoptosis at Inflection Point in Liquid Culture of Budding Yeasts

    Get PDF
    Budding yeasts are highly suitable for aging studies, because the number of bud scars (stage) proportionally correlates with age. Its maximum stages are known to reach at 20–30 stages on an isolated agar medium. However, their stage dynamics in a liquid culture is virtually unknown. We investigate the population dynamics by counting scars in each cell. Here one cell division produces one new cell and one bud scar. This simple rule leads to a conservation law: “The total number of bud scars is equal to the total number of cells.” We find a large discrepancy: extremely fewer cells with over 5 scars than expected. Almost all cells with 6 or more scars disappear within a short period of time in the late log phase (corresponds to the inflection point). This discrepancy is confirmed directly by the microscopic observations of broken cells. This finding implies apoptosis in older cells (6 scars or more)

    Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana

    Get PDF
    The present study reports the role of auxin and its transport inhibitor during the establishment of an efficient and optimized protocol for the somatic embryogenesis in Digitalis trojana Ivan. Hypocotyl segments (5 mm long) were placed vertically in the Murashige and Skoog medium supplemented with three sets [indole-3-acetic acid (IAA) alone or 2,3,5-triiodobenzoic acid (TIBA) alone or IAA-TIBA combination] of formulations of plant growth regulators, to assess their differential influence on induction and proliferation of somatic embryos (SEs). IAA alone was found to be the most effective, at a concentration of 0.5 mg/l, inducing similar to 10 SEs per explant with 52% induction frequency. On the other hand, the combination of 0.5 mg/l of IAA and 1 mg/l of TIBA produced significantly fewer (similar to 3.6 SEs) and abnormal (enlarged, oblong, jar and cup-shaped) SEs per explant with 24% induction frequency in comparison to that in the IAA alone. The explants treated with IAA-TIBA exhibited a delayed response along with the formation of abnormal SEs. Our study revealed that IAA induces high-frequency SE formation when used singly, but the frequency gradually declines when IAA was coupled with increasing levels of TIBA. Eventually, our findings bring new insights into the roles of auxin and its polar transport in somatic embryogenesis of D. trojana

    How Well Do Randomized Trials Inform Decision Making: Systematic Review Using Comparative Effectiveness Research Measures on Acupuncture for Back Pain

    Get PDF
    Background: For Comparative Effectiveness Research (CER) there is a need to develop scales for appraisal of available clinical research. Aims were to 1) test the feasibility of applying the pragmatic-explanatory continuum indicator summary tool and the six CER defining characteristics of the Institute of Medicine to RCTs of acupuncture for treatment of low back pain, and 2) evaluate the extent to which the evidence from these RCTs is relevant to clinical and health policy decision making. Methods: We searched Medline, the AcuTrials™ Database to February 2011 and reference lists and included full-report randomized trials in English that compared needle acupuncture with a conventional treatment in adults with non-specific acute and/or chronic low back pain and restricted to those with ≥30 patients in the acupuncture group. Papers were evaluated by 5 raters. Principal Findings: From 119 abstracts, 44 full-text publications were screened and 10 trials (4,901 patients) were evaluated. Due to missing information and initial difficulties in operationalizing the scoring items, the first scoring revealed inter-rater and inter-item variance (intraclass correlations 0.02-0.60), which improved after consensus discussions to 0.20-1.00. The 10 trials were found to cover the efficacy-effectiveness continuum; those with more flexible acupuncture and no placebo control scored closer to effectiveness. Conclusion: Both instruments proved useful, but need further development. In addition, CONSORT guidelines for reporting pragmatic trials should be expanded. Most studies in this review already reflect the movement towards CER and similar approaches can be taken to evaluate comparative effectiveness relevance of RCTs for other treatments. © 2012 Witt et al.published_or_final_versio
    corecore