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ABSTRACT 

Evolutionarily conserved polo-like kinase, Cdc5 (Plk1 in humans) associates with 

kinetochores during mitosis, however, the role of cell cycle dependent centromeric (CEN) 

association of Cdc5 and its substrates that exclusively localize to the kinetochore have 

not been characterized. Here we report that evolutionarily conserved CEN histone H3 

variant, Cse4 (CENP-A in humans) is a substrate of Cdc5, and that the cell cycle 

regulated association of Cse4 with Cdc5 is required for cell growth. Cdc5 contributes to 

Cse4 phosphorylation in vivo and interacts with Cse4 in mitotic cells. Mass spectrometry 

analysis of in vitro kinase assays showed that Cdc5 phosphorylates nine serine residues 

clustered within the N-terminus of Cse4. Strains with cse4-9SA exhibit increased errors in 

chromosome segregation, reduced levels of CEN-associated Mif2 and Mcd1/Scc1 when 

combined with a deletion of MCM21. Moreover, the loss of Cdc5 from the CEN 

chromatin contributes to defects in kinetochore integrity and reduction in CEN-associated 

Cse4. The cell cycle regulated association of Cdc5 with Cse4 is essential for cell viability 

as constitutive association of Cdc5 with Cse4 at the kinetochore leads to growth defects. 

In summary, our results have defined a role for Cdc5-mediated Cse4 phosphorylation in 

faithful chromosome segregation. 
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Abbreviations used:  

CEN, centromere;  

CAR, cohesin-associated region; 

CATD, centromere targeting domain; 

CF, chromosome fragment;  

ChIP, chromatin immunoprecipitation;  

FACS, fluorescence activated cell sorting; 

FEAR, Cdc fourteen early anaphase release; 

FOA, 5-fluoroorotic acid; 

HFD, histone fold domain; 

IP, immunoprecipitation; 

GBP, GFP-binding protein; 

GFP, green fluorescent protein; 

LC-MS/MS, liquid chromatography-tandem mass spectrometry; 

PBD, polo-box domain; 

PTM, post-translational modification; 

qPCR, quantitative PCR; 

RFP, red fluorescent protein;  

SPA, selective ploidy ablation; 

SPI, synthetic physical interaction; 

YFP, yellow fluorescent protein. 
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INTRODUCTION  

Faithful chromosome segregation is essential for the growth and cellular proliferation of 

organisms because defects in this process results in aneuploidy, which has been observed 

in human diseases such as cancer, and developmental disorders (Santaguida and Amon, 

2015). A key determinant for high fidelity chromosome segregation is the kinetochore, 

which is composed of centromeric (CEN) DNA, associated proteins and a unique 

chromatin structure (Verdaasdonk and Bloom, 2011; Burrack and Berman, 2012; 

Musacchio and Desai, 2017). CENs in budding yeast are composed of ~125 bp of unique 

DNA sequence (Clarke and Carbon, 1980), whereas CENs in other eukaryotes are several 

mega-base pairs of DNA representing sequence repeats, species-specific satellite arrays, 

or retrotransposon-derived sequences (Verdaasdonk and Bloom, 2011). Despite the CEN 

sequence divergence, the role of CEN in chromosome segregation is evolutionarily 

conserved (Verdaasdonk and Bloom, 2011; Burrack and Berman, 2012). Moreover, many 

of the ~70 kinetochores proteins representing different sub-complexes from budding 

yeast (Westermann et al., 2003; Cho et al., 2010; Biggins, 2013) are functionally 

conserved (Musacchio and Desai, 2017). For example, CEN identity in eukaryotic 

organisms is specified by an epigenetic mark in the form of specialized nucleosomes 

containing Cse4 (CENP-A in humans, Cid in flies, Cnp1 in fission yeast) (Sullivan et al., 

1994; Stoler et al., 1995; Meluh et al., 1998; Henikoff et al., 2000; Takahashi et al., 

2000). In budding yeast, Cse4 contains two distinct domains. The evolutionarily 

conserved C-terminus histone fold domain (HFD) carries a centromere targeting domain 

(CATD), which is essential for recruitment and incorporation of Cse4 into the CEN 

chromatin (Meluh et al., 1998; Keith et al., 1999). The N-terminus of Cse4 (~129 amino 
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acids) interacts with kinetochore proteins such as the components of the COMA complex 

(Ctf19, Okp1, Mcm21, and Ame1), and facilitates their recruitment to the CEN (Ortiz et 

al., 1999). Moreover, the N-terminus of CENP-A also directs the targeting of other 

kinetochore proteins to the CEN (Van Hooser et al., 2001). In addition, post-translational 

modifications (PTMs) of Cse4, namely, phosphorylation, ubiquitination, sumoylation, 

methylation, and acetylation also regulate faithful chromosome segregation (Hewawasam 

et al., 2010; Ranjitkar et al., 2010; Samel et al., 2012; Au et al., 2013; Boeckmann et al., 

2013; Ohkuni et al., 2016; Hoffmann et al., 2018). Previous studies have shown that an 

evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4 (Buvelot 

et al., 2003; Boeckmann et al., 2013). Using mass spectrometric analysis of Cse4 from 

wild-type yeast cells, we have previously reported the in vivo phosphorylation of Cse4 

sites S22, S33, S40, and S105 (Boeckmann et al., 2013). Moreover, a recent study has 

confirmed the presence of in vivo phosphorylation of Cse4 on serine 33, and shown that 

cse4-S33A mutants show reduced levels of Cse4 at CEN when combined with the 

mutations in histone H2A and H4 (Hoffmann et al., 2018). However, the protein kinase 

responsible for this modification has not been defined. 

 

Evolutionarily conserved polo-like kinase Cdc5 (Plk1 in humans) regulates several 

aspects of mitotic cell cycle and chromosome segregation (St-Pierre et al., 2009; Walters 

et al., 2014; Zitouni et al., 2014) including sister chromatid separation by 

phosphorylation of Mcd1/Scc1 promoting its proteolytic cleavage by separase (Uhlmann 

et al., 2000; Alexandru et al., 2001). Cdc5 associates with CEN and cohesin-associated 

regions (CARs) along chromosome arms in a cell cycle regulated manner and is required 
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for the removal of cohesins from the CEN chromatin during mitosis (Rossio et al., 2010; 

Mishra et al., 2016). In addition to cohesins Mcd1/Scc1, and Smc3, several other Cdc5-

interacting proteins have been identified, such as protein kinase Swe1, protein 

phosphatase Cdc14, spindle pole body components Spc72 and Spc110, and the Cdc 

Fourteen Early Anaphase Release (FEAR) network protein Slk19 (Alexandru et al., 2001; 

Snead et al., 2007; Park et al., 2008; Rahal and Amon, 2008; Roccuzzo et al., 2015; 

Botchkarev and Haber, 2018). Moreover, Plk1 in human cells has been shown to 

phosphorylate kinetochore protein Mis18BP1 to facilitate the assembly of newly 

synthesized CENP-A at the CEN (McKinley and Cheeseman, 2014), however, a homolog 

of Mis18BP1 has not been identified in budding yeast. Intriguingly, a candidate-based 

screen using Cdc5 polo-box domain (PBD) as a bait showed an enrichment of 

kinetochore proteins Cse4 and Tid3 (Snead et al., 2007), however, the molecular 

significance of the interaction of Cdc5 with Cse4, and Cdc5 substrates that localize 

exclusively to the kinetochore have not been characterized. 

 

In this study, we show that Cdc5 interacts in vivo with Cse4 in mitotic cells (G2/M), and 

phosphorylates Cse4 in vitro and in vivo. Cdc5-mediated Cse4 phosphorylation regulates 

faithful chromosome segregation as evident from the increased frequency of chromosome 

loss in the non-phosphorylatable cse4 mutant (cse4-9SA) when combined with a deletion 

of MCM21. Significant reduction in levels of kinetochore protein Mif2, and cohesin 

Mcd1/Scc1 are observed at CEN chromatin in a cse4-9SA mcm21 strain. The 

constitutive association of Cdc5 with Cse4 at the kinetochore causes growth defects 

suggesting that cell cycle regulated interaction of these two proteins restricted to mitosis 
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is essential for cell viability. In summary, we have identified Cse4 as a substrate for 

Cdc5, and shown that Cdc5 mediated phosphorylation of Cse4 contributes to high fidelity 

chromosome segregation. 

 

RESULTS  

Cdc5 interacts with Cse4 in vivo in a cell cycle dependent manner 

The budding yeast polo-like kinase, Cdc5 associates with centromeres in mitosis and 

facilitates the removal of CEN cohesin (Mishra et al., 2016). Cse4 was enriched in a 

screen to identify proteins that interact with the polo-box domain (PBD) of Cdc5 used as 

a bait (Snead et al., 2007). We explored the role of the interaction of Cdc5 with Cse4 in 

faithful chromosome segregation. Immunoprecipitation (IP) experiments were done to 

determine if Cdc5 interacts with Cse4 in vivo. We constructed a strain that expresses HA-

tagged Cdc5, and Flag-tagged Cse4. IP was done using protein extracts from 

logarithmically growing asynchronous cultures (Figure 1A and B). Western blotting 

showed that Cdc5 interacts with Cse4 in vivo, whereas no signals were detected in a 

control experiment using an untagged strain (Figure 1C).  

 

To determine whether the in vivo interaction of Cdc5 with Cse4 is cell cycle regulated, IP 

experiments were performed using cells synchronized in G1 (-factor treatment), S 

(hydroxyurea treatment), or G2/M (nocodazole treatment) stages of the cell cycle. The 

cell cycle synchronization was confirmed by FACS (Figure 1A), and examination of 

nuclear and cell morphology (Figure 1B). In agreement with previous studies (Charles et 

al., 1998; Mishra et al., 2016), Cdc5 was expressed in S, and G2/M phases of the cell 
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cycle, whereas no protein expression was detected in G1 cells (Figure 1C). IP results 

showed an in vivo interaction between Cdc5 and Cse4 in G2/M cells (Figure 1C). No 

interaction of Cdc5 with Cse4 was detected in G1 and S-phase cells despite the 

expression of Cdc5 in S-phase (Figure 1C). As expected, no signals were detected in 

control experiments performed with an untagged strain (Figure 1C). Taken together, 

these results provide evidence for cell cycle regulated in vivo interaction of Cdc5 and 

Cse4 that occurs in mitotic cells.  

 

Cdc5 phosphorylates Cse4 in vitro  

To determine whether Cdc5 phosphorylates Cse4 directly, we performed in vitro kinase 

assays with radiolabeled ATP using Cdc5 purified from yeast (Ratsima et al., 2011), and 

Cse4 purified from Escherichia coli. Cse4 was radiolabeled in the presence of Cdc5, 

whereas no signal was observed from control in vitro assays containing purified histone 

H3 (Figure 2A). We next performed in vitro kinase assay by incubating purified Cse4 

either with wild type Cdc5 or its kinase inactive Cdc5kd protein [i.e., Cdc5-K110M; 

(Ratsima et al., 2011)]. Radiolabeled Cse4 was detected in the presence of wild-type 

Cdc5 but not the kinase inactive cdc5kd protein (Figure 2B) suggesting that the assay 

specifically reflects Cdc5 mediated kinase activity towards Cse4.  

 

Cdc5 mediated phosphorylation of Cse4 occurs largely within the N-terminus of 

Cse4  

To identify Cse4 residues phosphorylated by Cdc5, we performed an in vitro kinase assay 

as described in Figure 2A, and samples were analyzed by liquid chromatography-tandem 



 9 

mass spectrometry (LC-MS/MS). A total of nine phosphorylated serine sites (S9, S10, 

S14, S16, S17, S33, S40, S105, and S154) were identified (Figure 3A). Except for S154, 

which is located within the C-terminus histone fold domain, the remaining eight serine 

residues are largely clustered within the N-terminus of Cse4. Sequence analysis showed 

that these sites are evolutionarily conserved among different yeast species containing 

point centromeres (Figure 3B). To explore the physiological effects of the Cdc5 mediated 

Cse4 phosphorylation, we constructed a phosphorylation deficient cse4 mutant, in which 

all nine phosphorylated serines were changed to alanine (cse4-9SA). We examined the 

ability of cse4-9SA to complement the growth of cse4 strain using 5-fluoroorotic acid 

(5-FOA) mediated plasmid shuffle assay (Widlund and Davis, 2005; Tukenmez et al., 

2016). Strains carrying cse4-9SA grew robustly on 5-FOA plates confirming that cse4-

9SA allele can complement the cse4∆ (Figure 3C). As expected, no growth on 5-FOA 

was observed in cse4∆ strains with vector used as a negative control (Figure 3C). We 

next examined the levels of endogenously HA-tagged Cse4 and Cse4-9SA at the CEN in 

a wild type strain grown at 25°C. ChIP-qPCR showed that the CEN levels of Cse4 and 

Cse4-9SA were not significantly different (Figure 3D, p-value = >0.05). No significant 

enrichment of Cse4 or Cse4-9SA was detected at a negative control non-CEN HML locus 

(Figure 3D).  

 

Cdc5 contributes to the phosphorylation of Cse4 in vivo  

We have previously used a α-rabbit polyclonal phospho-Cse4 specific (αp-Cse4) 

antibodies that did not react with Cse4-4SA in which four serine sites of Cse4 were 

mutated to alanine (S22A, S33A, S40A, and S105A) to show increased levels of 
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phosphorylated Cse4 at the CEN (Boeckmann et al., 2013). Among the four serine sites, 

three (S33, S40 and S105) are phosphorylated by Cdc5 in vitro (Figure 3A). Hence, we 

used αp-Cse4 antibody to investigate the role of Cdc5 in Cse4 phosphorylation in vivo. 

Western blot analysis of affinity-purified Cse4 showed strong reactivity to αp-Cse4 but 

no signals were detected with Cse4-9SA suggesting that the nine serine residues in Cse4 

contribute to the reactivity of Cse4 with p-Cse4 antibody (Figure 3E). Since we 

observed an in vivo interaction of Cse4 and Cdc5 in metaphase (Figure 1), we used the 

αp-Cse4 antibody to examine the in vivo levels of Cse4 phosphorylation in metaphase 

cells from wild type and a well-characterized temperature-sensitive cdc5-99 mutant (St-

Pierre et al., 2009). Western blot analysis was done using affinity purified Cse4 from 

metaphase cells collected ~110 min after release from G1 arrest into pheromone-free 

media at 25 and 37C (Figure 3F and G). Our results showed similar levels of 

expression of Cse4 in wild type and cdc5-99, both at permissive (25°C) and non-

permissive (37°C) temperature of growth (Figure 3H). The levels of p-Cse4 were similar 

at 25°C between wild type and cdc5-99; however, the levels of p-Cse4  were lower in 

cdc5-99 than the wild type strain at 37°C (Figure 3H). We quantified the fraction of 

phosphorylated Cse4, and normalized this to the total Cse4 levels for each sample. The 

level of phosphorylated Cse4 was significantly lower (~30 %) in cdc5-99 than the wild 

type strain at 37°C (Figure 3I). Taken together, these results indicate that Cdc5 

contributes to the phosphorylation of Cse4 in vivo.  

 

Cse4 phosphorylation deficient and mcm21 mutants exhibit synthetic defects in 

chromosome segregation fidelity  
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With the exception of one serine, eight of the nine Cse4 serine residues that are 

phosphorylated by Cdc5 are in the N-terminus of Cse4 (Figure 3A). Cse4 interacts in vivo 

with Ctf19 and Mcm21 (Ortiz et al., 1999; Ranjitkar et al., 2010), and this interaction is 

mediated by the N-terminus of Cse4 (Chen et al., 2000). Genetic interactions have also 

been reported for mutants of cse4 with ctf19∆ and mcm21∆ (Samel et al., 2012). 

Moreover, Mcm21 and Ctf19 have additional roles in maintenance of CEN cohesion (Ng 

et al., 2009; Hinshaw et al., 2017), a biological process in which Cdc5 is also involved 

(Rossio et al., 2010; Mishra et al., 2016). Since the Cdc5 target sites in Cse4 are clustered 

largely within the N-terminus of Cse4, we assayed chromosome segregation in cse4-9SA 

strains in combination with deletions of MCM21 or CTF19. The loss of a non-essential 

reporter chromosome fragment (CF) was measured using the colony color assay as 

described previously (Spencer et al., 1990). The frequency of CF loss is slightly higher in 

cse4-9SA when compared to the wild type strain, but the difference is not statistically 

significant (Figure 4A). The frequency of CF loss in mcm21 and ctf19 is significantly 

higher than the wild type or cse4-9SA strains (Figure 4A). The frequency of CF loss in 

ctf19 and cse4-9SA ctf19 mutant is largely similar and does not differ significantly 

from each other (p-value = 0.3). However, the frequency of CF loss in cse4-9SA mcm21 

mutant is significantly higher than the mcm21 (~5-fold; p-value = 0.0023), cse4-9SA 

(~30-fold; p-value = 0.0009), and the wild type (~50-fold; p-value = 0.0008) strains 

(Figure 4A). These results show that Ctf19 independent events contribute to increased 

chromosome loss in cse4-9SA mcm21 strains but do not rule out a role for Cse4-9SA in 

the loading of Ctf19 to the centromeric chromatin. 
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We next examined if defects in phosphorylation of Cse4-S33 affects chromosome 

segregation when combined with mcm21∆. The rationale for this experiment is based on 

our identification of Cse4-S33 as a potential Cdc5 phosphorylation site and recent studies 

showing that phosphorylation deficient cse4-S33A and mutations in histones H2A and H4 

exhibit synthetic defects in CEN deposition of Cse4 (Hoffmann et al., 2018). The 

frequency of CF loss in cse4-S33A is statistically similar to that observed for wild type or 

cse4-9SA strains (p-value = 0.85). However, the frequency of CF loss in cse4-S33A 

mcm21 mutant is significantly higher than the mcm21 (~2-fold; p-value = 0.021), but 

is significantly lower than cse4-9SA mcm21  (p-value= 0.0094) strains (Figure 4A). 

Taken together, these results support a role for phosphorylation of Cse4 in faithful 

chromosome segregation.    

 

Phosphorylation of Cse4 regulates the CEN association of kinetochore protein Mif2, 

and cohesin component Mcd1/Scc1  

Our results for increased chromosome loss in cse4-9SA mcm21 strains prompted us to 

examine the role of Cse4 phosphorylation in kinetochore structure. Hence, we examined 

the levels of CEN-associated kinetochore protein Mif2, the yeast ortholog of mammalian 

CENP-C, which contributes to localization of Cse4 at the CEN, maintenance of spindle 

integrity, and cohesin-based partitioning mechanisms at the kinetochore (Brown et al., 

1993; Meluh and Koshland, 1995; Cohen et al., 2008; Ho et al., 2014; Tsabar et al., 

2016). ChIP experiments were performed to determine the enrichment of Mif2 at CEN, 

and CARs: peri-CEN (134), chromosomal arm (261), and negative control region (310) 

on chromosome III in cells synchronized with nocodazole in the G2/M stage of the cell 
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cycle (Figure 4B). No significant enrichment of Mif2 was detected at CARs located at 

peri-CEN (134), chromosomal arm (261) or a negative control region (310) (Figure 4C). 

ChIP-qPCR revealed mildly lower levels of CEN-associated Mif2 in cse4-9SA than the 

wild type strain (Figure 4C). However, Mif2 levels at CEN were significantly lower in 

cse4-9SA mcm21 than the wild type or single mutant strains (Figure 4C). Western 

blotting revealed that the reduction in CEN-associated Mif2 in the cse4-9SA mcm21Δ 

strain was not due to reduction in the levels of Mif2 (Figure 4D). Based on these results, 

we conclude that phosphorylation of Cse4 regulates CEN association of Mif2 in the 

absence of Mcm21.  

 

Previous studies have shown that cse4 and mcm21 strains exhibit reduced levels of 

cohesin at the CEN and peri-CEN chromatin (Weber et al., 2004; Ng et al., 2009). 

Deletion of MCM21 results in the failure of Ctf19 loading onto de novo kinetochores 

suggesting that Mcm21 is required for the assembly or productive association of Ctf19 

complex at the kinetochores (Lang et al., 2018). Moreover, defects in levels of CEN 

cohesin have been linked with altered kinetochore function (Brooker and Berkowitz, 

2014). Notably, Cdc5 regulates the removal of CEN cohesin (Alexandru et al., 2001; 

Mishra et al., 2016). Based on these results, we postulated that defects in Cdc5 mediated 

phosphorylation of Cse4 may affect CEN association of cohesins in an mcm21 strain. 

ChIP experiments were performed to examine the enrichment of cohesin component 

Mcd1/Scc1 at CEN, and CARs in mitotic cells. Mcd1/Scc1 enrichment at chromosomal 

arm region (261) was largely similar, and was not significantly different among the 

strains. No significant enrichment of Mcd1/Scc1 was detected at a negative control 
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region (310; Figure 4E). Enrichment of Mcd1/Scc1 at CEN, and CARs located at peri-

CEN (134) and chromosomal arm (261) was observed in wild type, and cse4-9SA strains 

(Figure 4E). Significantly reduced levels of Mcd1/Scc1 were observed at CEN, and peri-

CEN (134) in a mcm21 strain (Figure 4E), and this reduction was further exacerbated in 

cse4-9SA mcm21 strain in comparison to wild type, cse4-9SA, or mcm21 strains 

(Figure 4E). Reduction in enrichment of Mcd1/Scc1 at CEN and peri-CEN in cse4-9SA 

mcm21Δ strain was not due to reduction in the protein expression of Mcd1/Scc1 (Figure 

4F). Based on these results, we conclude that phosphorylation of Cse4 affects the CEN 

association of Mif2 and cohesins during mitosis.  

 

Centromeric association of Cdc5 regulates CEN-associated Cse4 and structural 

integrity of kinetochores  

Cdc5 associates with CEN chromatin during mitosis (Mishra et al., 2016), which 

correlates with the increased levels of phosphorylated Cse4 at the CEN (Boeckmann et 

al., 2013). Based on these results, we posit that the absence of Cdc5 from the CEN 

chromatin may exhibit alterations in levels of CEN associated Cse4, and defects in 

structural integrity of kinetochores. To address this hypothesis, we assayed the CEN 

association of Cdc5, and Cdc5-99 mutant grown at permissive (25°C) and non-

permissive (37°C) temperatures (St-Pierre et al., 2009). Western blot analysis showed 

similar levels of expression of Cdc5 and Cdc5-99 at the permissive temperature of 25°C 

and after a shift to the non-permissive temperature of 37°C (Figure 5A). ChIP-qPCR 

showed that the enrichment of Cdc5 and Cdc5-99 at CEN chromatin (CEN1, CEN3, and 

CEN5)  is not significantly different at 25°C (p-value = >0.05). However, reduced levels 
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of Cdc5-99 were observed at CEN chromatin (~5-9 fold) at 37°C (Figure 5B). There was 

no significant enrichment of Cdc5 or Cdc5-99 at non-CEN negative control region 

(6K120) relative to that observed at the CEN3 (Figure 5B). Overall, these results show 

that mutant Cdc5-99 cannot associate with CEN at the non-permissive temperature.   

 

We next examined the effect of loss of CEN association of Cdc5-99 on the levels of 

endogenously HA-tagged Cse4 at the CEN using wild type and cdc5-99 strains grown at 

25°C and after a shift to 37°C. ChIP-qPCR showed that the levels of CEN associated 

Cse4 in wild type and cdc5-99 strains at 25°C are not statistically different (p-value = 

>0.05). However, enrichment of Cse4 at the CEN was reduced significantly in cdc5-99 

(1.29% of input at CEN1, 1.33% at CEN3, and 1.31% at CEN5) compared with the levels 

observed in a wild type strain (2.49% at CEN1, 2.26% at CEN3, and 2.42% at CEN5) at 

37°C (Figure 5C). No significant enrichment of Cse4 was detected at the non-CEN HML 

locus used as a negative control (Figure 5C).  

 

We reasoned that the reduced levels of CEN associated Cse4 in cdc5-99 strain at 37°C 

(Figure 5C) may affect the structural integrity of kinetochores. Hence, we used DraI 

restriction enzyme accessibility assay as described previously to measure the structural 

integrity of the kinetochore (Saunders et al., 1990; Mishra et al., 2013). DNA was 

extracted from nuclei prepared from wild type and cdc5-99 strains grown at 25°C and 

37°C after treatment with 100 U/mL DraI. We quantified the levels of DraI accessibility 

by qPCR using primers flanking CEN3 or a non-CEN control ADP1 region (Mishra et al., 

2013). The CEN3 chromatin in cdc5-99 strain was significantly more susceptible to DraI 
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digestion (~2-fold) at 37°C than that observed at 25°C (Figure 5D). No significant 

increased DraI accessibility of CEN3 chromatin was observed in a wild type strain at 

25°C or 37°C (~1.1-1.8%), which was largely similar to that observed for cdc5-99 strain 

at 25°C (~1.4-1.9%) (Figure 5D). The ADP1 chromatin showed low sensitivity to DraI 

treatments (~1.0-1.3%), and no significant differences in the accessibility of DraI to 

ADP1 region were observed between wild type and cdc5-99 strains grown at 25° or 37°C 

(Figure 5D). These results show that CEN association of Cdc5 regulates structural 

integrity of kinetochores.  

 

Cell cycle regulated interaction of Cdc5 with Cse4 is required for cell growth  

In vivo interaction between Cdc5 and Cse4 is detectable only in mitotic cells (G2/M; 

Figure 1C). Hence, we sought to understand the physiological significance of cell cycle 

dependent association of Cdc5 with Cse4. We postulated that constitutive association of 

Cdc5 with Cse4 throughout the cell cycle may affect cell growth. Hence, we used the 

synthetic physical interaction (SPI) assay (Olafsson and Thorpe, 2015) to examine the 

effect of constitutive association of Cdc5 with Cse4 at kinetochores. Wild type Cdc5 

protein was linked to the sequence encoding a GFP-binding protein (GBP) (Rothbauer et 

al., 2008), which also carries a tag representing red fluorescent protein (RFP). Plasmids 

expressing Cdc5-GBP, or control-GBP (vector carrying GBP domain) were transformed 

into strains carrying Cse4-GFP, Cep3-GFP or non-GFP controls. Microscopic 

examinations of cells confirmed the colocalization of Cdc5 with Cse4-GFP or Cep3-GFP 

(Figure 6A and B). Cep3 is an essential kinetochore protein that binds CDEIII region of 

the CEN (Lechner and Carbon, 1991; Strunnikov et al., 1995), and is about 44 nm away 
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from Cse4 at the metaphase kinetochores (Haase et al., 2013). In control experiment with 

GBP-RFP, only one or two-foci of Cse4 were observed in a cell, however constitutive 

association of Cdc5 with Cse4 causes alteration in its localization pattern as evident from 

the multiple and diffused Cse4 foci (Figure 6A). Constitutive association of Cdc5 with 

inner kinetochore protein Cep3, which was used as a control, does not exhibit altered 

localization phenotype (Figure 6B).  

We next performed growth assays using selective ploidy ablation (SPA) technology 

(Reid et al., 2011) with 16 replicates per strain to examine the effect of constitutive 

association of Cdc5 on Cse4. Plates were scanned, and growth measurements were 

determined using the ScreenMill software (Dittmar et al., 2010). Colony sizes were 

quantified and compared among strains as described previously (Olafsson and Thorpe, 

2015). We observed that constitutive association of Cdc5 with Cse4-GFP causes growth 

defects, whereas no growth inhibition was observed with inner kinetochore protein, 

Cep3-GFP or non-GFP control strains (Figure 6C and D). The growth defects were 

mediated by the kinase activity of Cdc5 because strains expressing kinase inactive cdc5kd 

exhibited growth phenotypes similar to Cep3-GFP or non-GFP control strains (Figure 6C 

and D). To determine whether constitutive association of Cdc5 with Cse4 causes arrest at 

a particular cell cycle stage, we created conditionally-expressed Cdc5 in which the polo 

box domain was replaced with GBP (Cdc5C-GBP) and its kinase inactive mutant 

(cdc5Ckd-GBP) under the control of GAL1 promoter. Cdc5C-GBP was used because 

overexpression of full length Cdc5 is lethal. GALCdc5C-GBP  and GALcdc5Ckd-GBP 

were expressed in a wild type and Cse4-YFP strains. Consistent with the results of the 

SPI assay, constitutive expression of Cdc5C-GBP causes lethality in Cse4-YFP strain, 
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but not in a wild type strain (Figure 6E). Hence, we assayed the cell cycle stages of 

GALCdc5C-GBP in Cse4-YFP strain after 4 hours of growth on galactose. The cell 

cycle stages categorized based on nuclear position and cell morphology showed that 

constitutive association of Cdc5 with Cse4 does not cause accumulation of cells in any 

specific cell cycle stage (Figure 6F). The cell cycle distribution of strains expressing 

GALCdc5C-GBP is not statistically different from GALcdc5Ckd-GBP or an empty 

vector control (Figure 6F). To further determine the biological significance of 

constitutive phosphorylation of Cse4, we constructed the phospho-mimetic cse4 mutant, 

in which all nine phosphorylated serines were changed to aspartic acid (cse4-9SD), and 

examined its ability to complement the growth of a cse4 strain after loss of CSE4/URA3 

plasmid by counterselection on medium containing 5-FOA. Strains with Cse4 and cse4-

9SA grew robustly on plates containing 5-FOA, whereas strains carrying cse4-9SD did 

not exhibit growth on 5-FOA plates after 6 days of incubation at 25C (Figure 6G). 

Taken together, these results show that constitutive association of Cdc5 with Cse4 is 

detrimental to cell growth and define a physiological role for cell cycle regulated 

association of Cdc5 with Cse4.   

 

DISCUSSION 

Polo-like kinase Cdc5 and its homologs regulate different stages of the mitotic and 

meiotic cell cycle, and high-fidelity chromosome segregation (Zitouni et al., 2014). Cdc5 

in budding yeast associates with the CEN chromatin during mitosis (Mishra et al., 2016), 

however kinetochore specific substrates for Cdc5, and the physiological role of Cdc5-

mediated phosphorylation of kinetochore proteins have not been characterized. In this 
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study, we have identified Cdc5 as a kinase for Cse4 and defined a role for Cdc5-mediated 

Cse4 phosphorylation in faithful chromosome segregation. Our results have shown that: 

(1) Cdc5 interacts in vivo with Cse4 in mitotic cells, (2) Cdc5 phosphorylates Cse4 in 

vitro, (3) Cdc5 contributes to phosphorylation of Cse4 in vivo, (4) mutations that abrogate 

Cdc5-mediated phosphorylation of Cse4 (cse4-9SA) lead to increased chromosome loss, 

reduction in kinetochore protein Mif2, and cohesin Mcd1/Scc1 at the CEN chromatin, (5) 

constitutive association of Cdc5 with Cse4 at the kinetochore causes growth defects, and 

(6) mutations that mimic phosphorylation (cse4-9SD) lead to loss of viability. We 

propose that the cell cycle regulated association of Cdc5 with Cse4 regulates 

phosphorylation of Cse4 for the structure and function of the kinetochore and cell 

viability.  

 

In vitro assay showed that the kinase domain of Cdc5 mediates the phosphorylation of 

Cse4. The failure of Cdc5 to phosphorylate histone H3 implies that in vitro 

phosphorylation observed is specific to Cse4. Mass spectrometric analysis revealed that 

nine of the eight serine residues in Cse4 phosphorylated by Cdc5 are within the N-

terminus domain of Cse4 (S9, S10, S14, S16, S17, S33, S40, S105). We previously 

showed in vivo phosphorylation of Cse4 serine sites: S22, S33, S40, and S105 using mass 

spectrometric analysis of Cse4 from wild-type yeast cells. The phosphorylation of S40 

and S105 is regulated by Aurora B kinase Ipl1 in vitro (Boeckmann et al., 2013). 

Phosphorylation of Cse4 site S33 has been linked with its CEN deposition as reduced 

levels of Cse4 were detected in histone H2A and H4 mutants with phosphorylation 

deficient cse4-S33A (Hoffmann et al., 2018), however the kinase responsible for this 
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phosphorylation has not been identified. Our in vitro kinase assay revealed that S33 of 

Cse4 is a target site for Cdc5 phosphorylation. Moreover, biochemical assays showed that 

Cdc5 contributes to the phosphorylation of Cse4 in vivo. For example, using p-Cse4 

antibody, we observed a reduction in phosphorylated Cse4 in metaphase cells of a 

temperature-sensitive cdc5-99 mutant (St-Pierre et al., 2009). It is notable that a fraction 

of Cse4 can still be phosphorylated in cdc5-99 mutant suggesting that this may be 

mediated by the Ipl1 kinase as reported previously (Boeckmann et al., 2013). Together, 

these data show that phosphorylation of Cse4 is facilitated by at least these two kinases. It 

is possible that Cdc5 and Ipl1 may regulate differential phosphorylation of Cse4 in 

response to geometric or conformational changes at the kinetochores during the cell cycle 

(Pearson et al., 2004; Yeh et al., 2008; Verdaasdonk et al., 2012). This conclusion is 

consistent with previous reports for multiple protein kinases coordinatively modifying a 

substrate in response to cell cycle dynamics. For example, Cdc28 and Cdc5 work 

synergistically for the phosphorylation of Swe1 and condensin in budding yeast (Asano et 

al., 2005; St-Pierre et al., 2009; Robellet et al., 2015). Moreover, cyclin-dependent kinase 

(Cdk), meiosis-specific kinase (Ime2), and Cdc5 block DNA replication between the two 

meiotic divisions by phosphorylation of several components involved in helicase-loading 

and an essential helicase-activation protein Sld2 (Phizicky et al., 2018). Notably, Cdk and 

Cdc7 kinases function in a concerted manner in phosphorylation of Mcm2 in human cells 

(Cho et al., 2006). Phosphorylation of S26 and S40 of Mcm2 by both Cdk and Cdc7 

kinases have been implicated in DNA replication (Cho et al., 2006). 

 

Our study revealed that the in vivo interaction of Cdc5 and Cse4 is cell cycle regulated 
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and occurs in mitotic cells. The mitotic interaction of Cdc5 with Cse4 is coincident with 

the cell cycle regulated association of Cdc5 with CEN chromatin in metaphase and early 

anaphase cells, but lack of enrichment in telophase and G1 cells (Mishra et al., 2016). 

Notably, the mitotic interaction of Cdc5 with Cse4 also correlates with the increased 

levels of phosphorylated Cse4 observed at CEN in cells arrested in G2/M stage of the cell 

cycle but not in G1 (Boeckmann et al., 2013). Taken together, our results show that the 

phosphorylation pattern of Cse4 overlaps with the CEN association and activity of Cdc5 

kinase during mitosis (Charles et al., 1998; Alexandru et al., 2001; Hornig and Uhlmann, 

2004; Mishra et al., 2016). The cell cycle dependent phosphorylation of Cse4 is 

physiologically important as constitutive phosphorylation of Cse4 is detrimental for cell 

growth as cse4-9SD phosphomimetic mutant cannot rescue the growth of a cse4∆ strain. 

Consistent with this hypothesis, we have shown that constitutive association of Cdc5 with 

Cse4 results in growth defects. We propose that cell cycle regulated association of Cdc5 

facilitates dynamic phosphorylation of Cse4 for the maintenance of proper kinetochore 

structure and faithful chromosome segregation. Previous studies have showed that 

dynamic phosphorylation of kinetochore proteins, such as Cse4, Dam1, Ndc80, Dsn1 and 

Ask1 destabilizes defective kinetochore to promote biorientation by interaction with 

microtubules (Cheeseman et al., 2002; Westermann et al., 2003; Akiyoshi and Biggins, 

2010; Boeckmann et al., 2013; Jin et al., 2017).    

 

Defect in Cse4 phosphorylation (cse4-9SA) causes increased errors in chromosome 

segregation when combined with mcm21 indicating a role for Cse4 phosphorylation in 

the maintenance of kinetochore integrity during mitosis. This is not surprising given that 
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cse4-4SA and cse4-S33A exhibit phenotypic defects only when combined with dam1 and 

hhf1 mutants, respectively (Boeckmann et al., 2013; Hoffmann et al., 2018). Moreover, 

both Cse4 and Mcm21 have roles in CEN structure-function, spindle biorientation, and 

maintenance of CEN cohesion (Meluh et al., 1998; Ng et al., 2009; Pekgoz Altunkaya et 

al., 2016; Tsabar et al., 2016; Mishra et al., 2018). Our results showing significantly 

reduced levels of Mif2 at CEN in cse4-9SA mcm21 compared to the single mutant 

(cse4-9SA or mcm21) further supports a role for phosphorylation of Cse4 in the 

assembly of CEN chromatin and kinetochore function. As CEN localization of Mif2 

requires Cse4 (Ho et al., 2014), the reduced levels of Mif2 at CEN in cse4-9SA mcm21 

strain may be a reflection of altered association of cse4-9SA at the CEN. A previous study 

has shown that Mif2 and Cse4 are required for the association of cohesins at the 

centromeres (Eckert et al., 2007). Moreover, deletion of MCM21 affects the assembly of 

Ctf19 complex at the kinetochores (Lang et al., 2018). In agreement with these reports, 

our results showed reduced levels of Mcd1/Scc1 at the CEN in cse4-9SA mcm21∆ strains 

that exhibited reduction in Mif2 at the CENs. We propose that Cdc5-mediated 

phosphorylation of Cse4 contributes to faithful chromosome segregation.   

 

In summary, we have shown that Cdc5 interacts with Cse4 in vivo in a cell cycle 

dependent manner, and this interaction is essential for cell viability. We provide the first 

evidence for a functional role for Cdc5-mediated phosphorylation of Cse4 in faithful 

chromosome segregation. It is notable that Plk1 (Cdc5 homolog in humans) 

phosphorylates kinetochore protein Mis18BP1, which in turn promotes the CEN 

assembly of newly synthesized CENP-A (McKinley and Cheeseman, 2014). However, it 
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remains unexplored whether CENP-A is a direct substrate for Plk1 in human cells. 

Identification and characterization of additional Plk1 substrates at the human 

kinetochores will allow us to better understand the role of epigenetic modifications, such 

as phosphorylation in the assembly of a functional kinetochore for chromosomal stability.  

 

 

MATERIALS AND METHODS  

Yeast strains, plasmids, and growth conditions 

Yeast strains were grown in yeast peptone dextrose medium (1% yeast extract, 2% Bacto-

peptone, 2% glucose; YPD) or in synthetic medium with supplements to allow for the 

selection of plasmids being used. Yeast strains, and plasmids are listed in Table 1. 

 

Chromosome segregation assay  

The fidelity of chromosome segregation was measured using a colony color assay as 

described previously (Spencer et al., 1990). In this assay, loss of non-essential reporter a 

chromosome fragment (CF) leads to red sectors in an otherwise a white colony. Wild 

type, cse4-S33A, cse4-9SA, mcm21, cse4-9SA mcm21, cse4-S33A mcm21, ctf19, 

and cse4-9SA ctf19  strains carrying CF were grown in medium selective for the CF to 

the logarithmic phase, and plated on complete synthetic medium with limiting adenine at 

33ºC to allow the loss of CF. About 1000 colonies of three transformants were examined 

for each strain. The frequency of CF loss was determined by counting the number of 

colonies that were at least half red representing the loss of the CF during the first mitotic 

cell division cycle.  
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Chromatin immunoprecipitation (ChIP) and quantitative PCR (qPCR) 

ChIP experiments were performed with three biological replicates following the 

procedure as described previously (Mishra et al., 2007; Mishra et al., 2011). Antibodies 

used to capture protein-DNA complexes were -GFP sepharose (ab69314, AbCam), α-

Mif2 (a gift from Pam Meluh), α-Cdc5 (custom made by the D’Amours laboratory; 

(Ratsima et al., 2011; Robellet et al., 2015)), and α-HA agarose (A2095, Sigma Aldrich). 

ChIP-qPCR was performed in 7500 Fast Real Time PCR System using Fast SYBR Green 

Master Mix (Applied Biosystems, Foster City, CA) with the following conditions: 95ºC 

for 20 sec, followed by 40 cycles of 95ºC for 3 sec, 60ºC for 30 sec. The enrichment was 

determined as percent input using the CT method (Livak and Schmittgen, 2001). Primer 

sequences are listed in Table 2.  

 

Cell cycle synchronization, immunoprecipitation (IP) and Western blotting 

Strains were grown to logarithmic phase at 30C in synthetic complete (SC) medium 

lacking tryptophan (SC-Trp) and further incubated for 2 hours to synchronize cells in G1 

(3 μM alpha factor treatment), S (0.2 M hydroxyurea treatment), and G2/M (20 μg/ml 

nocodazole treatment) stages of the cell cycle. Cells were collected, washed with water, 

grown for 1 hour in SC-Trp with galactose + raffinose (2% each) medium to induce the 

expression of Flag-tagged Cse4 expressed from the GAL1 promoter. Culture media also 

contained chemicals described above to keep the cells in G1, S and G2/M stages of the 

cell cycle. Samples were collected for nuclear morphology, DNA content, and IP 

analyses. IP experiments were performed using -Flag agarose antibodies (A2022, Sigma 
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Aldrich) as described previously (Mishra et al., 2011; Mishra et al., 2018). Whole cell 

extracts were prepared with the TCA method (Kastenmayer et al., 2005), and quantified 

using Bio-Rad DC protein quantitation assay (Bio-Rad Laboratories, Hercules, CA). 

Protein samples were resolved on SDS polyacrylamide gels, and transferred to 

nitrocellulose membrane. Primary antibodies used for Western blotting were -HA 

(H6908, Sigma Aldrich), -Flag (F3165, Sigma Aldrich), -GFP (11814460001, Roche), 

α-Mif2 (a gift from Pam Meluh), and -Tub2 (custom made by the Basrai laboratory). 

Secondary antibodies: HRP-conjugated sheep -rabbit IgG (NA934V) and HRP-

conjugated sheep -mouse IgG (NA931V) were obtained from Amersham Biosciences 

(United Kingdom). 

 

In vitro kinase assay and mass spectrometry 

In vitro kinase assay and mass spectrometry were carried out using Cse4 produced and 

purified from Escherichia coli as described previously (Luger et al., 1997; Boeckmann et 

al., 2013). Wild type Cdc5 and its kinase dead derivative (K100M) were purified from 

yeast as previously described (Ratsima et al., 2011). In vitro kinase assays were 

performed using radiolabeled ATP in 20-μl reaction volume containing 0.5 μg Cse4, 40 

ng Cdc5, 2 mM dithiothreitol, 1 mM MgCl2, 25 mM Tris-HCl pH 7.5, 100 μM ATP, and 

1 μCi of [γ-
32

P]ATP. Control reactions were performed using purified histone H3 with 

Cdc5. Reactions were incubated at 30°C for 60 min, stopped with 5 μl of 4 × NuPAGE 

LDS loading buffer (Life Technologies, Grand Island, NY), boiled for 5 min at 95°C, and 

were run on 4–12% Bis-Tris SDS-polyacrylamide gels (Invitrogen). Gels were stained 

with Coomassie blue, and radiolabeled proteins were visualized using a Storm Detector 
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Model 860 (Molecular Dynamics, USA). For mass spectrometry, in vitro kinase assay 

with and without Cdc5 were performed as described previously (Boeckmann et al., 

2013). Reactions were analyzed on 4–12% Bis-Tris SDS-polyacrylamide gels 

(Invitrogen), Cse4 bands were excised, and subjected to mass spectrometry following 

procedures described previously (Waybright et al., 2008; Boeckmann et al., 2013). The 

Saccharomyces cerevisiae proteome database (www.expasy.org) was used for data 

analysis. 

 

 

 

In vivo assay for phosphorylation of Cse4 

The levels of Cse4 phosphorylation in vivo were determined using procedures and p- 

Cse4 antibodies as described previously (Boeckmann et al., 2013). Wild type and cdc5-

99 strains carrying 6HIS-3HA-CSE4 expressed from GAL1 promoter were grown in 1x 

SC-URA with 2% glucose media at 25C. Cells were washed with water and inoculated 

into 1x SC-URA with galactose + raffinose (2% each) to induce the expression of 6HIS-

3HA-CSE4 and 1.5 µM α-factor to synchronize cells in G1. Cells were collected, washed 

with water, and released into pheromone free media (1x SC-URA with 2% galactose + 

raffinose) at 25 and 37C. Cell cycle progression was monitored by microscopic 

examination of nuclear and cell morphology. Samples for FACS and affinity pull down 

were collected ~110 min after G1 release when majority of cells were at metaphase 

(~70%) stage of the cell cycle. Cells were dissolved in lysis buffer (6 M guanidine 

chloride, 0.5 M NaCl, 0.1 M Tris, pH 8.0), and whole cell extracts were prepared using 
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FastPrep 24-5G bead beater (40 sec, 10 times, 1 min interval between bursts; MP 

Biomedicals) at 4C. Whole cell extracts were clarified by centrifugation, and incubated 

with nickel-charged superflow NTA agarose (Qiagen, Valencia, CA) for 16 hours at 4C. 

Beads were centrifuged, and washed once with lysis buffer, followed by three washes 

with washing buffer (100 mM Tris-Cl, pH 8.0, 20% glycerol, 1 mM 

phenylmethylsulfonyl fluoride; 5 min each wash at the room temperature). The bound 

protein was eluted by boiling at 100C for 10 min in 2× Laemmli buffer with 200 mM 

imidazole. Protein samples were resolved by SDS–PAGE on 4–12% Bis-Tris SDS-

polyacrylamide gels, and transferred to nitrocellulose membranes. Blots were washed 

with 1x TBST (Tris-buffered saline plus 0.1% Tween 20) three times for 5 min, blocked 

for 15 min in 1x TBST containing 5% skimmed milk. Western blot analysis was done 

using primary antibodies: α-HA (1/1000 dilutions; 12CA5, Roche) or αp-Cse4 (1/250 

dilutions, (Boeckmann et al., 2013)) in 1x TBST with 5% milk. Secondary antibodies 

used were: HRP-conjugated sheep -rabbit IgG (NA934V) and HRP-conjugated sheep 

-mouse IgG (NA931V). Signal intensities from Western blots were quantified using 

ImageJ (Schneider et al., 2012).   

 

Extraction of nuclei and DraI accessibility assays 

Extraction of nuclei and DraI accessibility experiments were as described previously 

(Mishra et al., 2013) with some modifications. Briefly, cells were dissolved in 

spheroplasting buffer (20 mM Hepes pH 7.4, 1.2 M sorbitol, 0.5 mM PMSF), added -

mercaptoethanol (5 l/ml cell suspension; Sigma Aldrich) and Zymolyase 100T (0.04 

mg/ml cell suspension; MP Biomedicals); and incubated at 37C for spheroplast 
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preparation. Spheroplasting was monitored by measuring OD800 in 1% SDS and reactions 

were stopped by washing in post-spheroplasting buffer (20 mM Pipes pH 6.8, 1.2 M 

sorbitol, 1 mM MgCl2, 1 mM PMSF) when >90% spheroplasting was achieved. 

Spheroplasts were lysed in 20 mM Pipes (pH 6.8), 18% Ficoll 400, 0.5 mM MgCl2, 1 

mM PMSF. Nuclei were released by vortexing for 10 min at 4C, and harvested by 

centrifugation through a glycerol/Ficoll gradient cushion (20% Glycerol, 20 mM Pipes 

pH 6.8, 7% Ficoll 400, 0.5 mM MgCl2, 1 mM PMSF). Nuclei were washed and 

resuspended in DraI buffer (1.0 M sorbitol, 20 mM Pipes pH 6.8, 0.1 mM CaCl2, 1 mM 

PMSF, 0.5 mM MgCl2). The nuclei concentrations were determined by measuring OD260 

in alkaline SDS buffer (0.2 N NaOH, 1% SDS). Equal volume of nuclei (100 l) from 

each sample were pre-warmed for 5 min at 37°C followed by the addition of 100 units of 

DraI (New England BioLabs) for 30 min. Restriction digestion was stopped by adjusting 

aliquots to 2% SDS, 20 mM EDTA. DNA was isolated after extraction first with phenol, 

chloroform, isoamyl alcohol (twice), treated with RNase A and Proteinase K, followed by 

extraction with chloroform. DNA was precipitated in ethanol at -20C, collected by 

centrifugation, dissolved in 1x TE (pH 8.0), and was used in qPCR to determine the 

susceptibility of CEN3 chromatin to digestion by DraI using Fast SYBR-Green Master 

Mix (Applied Biosystems, CA), and PCR primers flanking CEN3 and a control region 

ADP1 (Mishra et al., 2013). The amplification conditions for CEN3 were: initial 

denaturation at 95°C for 20 sec followed by cycling of 95°C for 3 sec, 60°C for 30 sec 

(data acquisition step); and ADP1 were: initial denaturation at 95°C for 30 sec followed 

by cycling of 95°C for 15 sec, 54°C for 15 sec, 68°C for 60 sec (data acquisition step) in 

a 7500 Fast-Real Time PCR System (Applied Biosystems, CA). The fraction of DNA 
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cleaved by DraI was determined by normalization of CT values to those obtained from 

the no DraI control.  

 

Synthetic physical interaction (SPI) and microscopy 

SPI screens were performed as previously described (Olafsson and Thorpe, 2015, 2018). 

Briefly, a Universal Donor Strain, which contains conditional GAL-CEN centromeres, 

was transformed separately with the control and experimental plasmids (expressing either 

Cdc5-GBP, cdc5kd-GBP (a kinase-dead version) or GBP alone; all under the control of a 

constitutive CUP1 promoter). These universal donor strains were then mated with 

members of the GFP collection arrayed with 16 replicates on 1536-colony rectangular 

agar plates using a pinning robot (ROTOR robot, Singer Instruments, UK). The resulting 

diploids were put through a series of sequential selection steps to maintain the plasmid, 

while destabilizing and then removing the chromosomes of the universal donor strain. 

The resulting plates were scanned using a desktop flatbed scanner (Epson V750 Pro, 

Seiko Epson Corporation, Japan). Colony sizes were assessed and the resulting data 

analyzed using the ScreenMill suite of software (Dittmar et al., 2010). Flourescence 

imaging was performed on yeast cells embedded in 0.7% low melting point agarose 

dissolved in growth medium. The cells were imaged with a Zeiss Axioimager Z2 

microscope using a 63x 1.4NA oil immersion lens, illuminated with a Zeiss Colibri LED 

light source (GFP=470 nm, RFP = 590 nm). Bright field contrast was enhanced using 

differential interference prisms. Images were captured using a Flash 4.0 LT CMOS 

camera with 6.5 µm pixels binned 2x2 (Hamamatsu photonics, Japan). 
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FIGURE 1. Cdc5 interacts in vivo with Cse4 in a cell cycle dependent manner. Strains 

carrying vector control (Untagged, YMB9325), Cdc5-HA (YMB9326), Cse4-Flag 

(YMB9327), and Cdc5-HA Cse4-Flag (YMB9328) were grown at 30C to logarithmic 

phase and synchronized in G1, S and G2/M stages of the cell cycle. Cell extracts were 

prepared for immunoprecipitation experiments using -Flag agarose antibodies. (A) 

FACS profiles show DNA content in different stages of the cell cycle. (B) Cell cycle 

stages were determined based on nuclear position and cell morphology by microscopic 

examination of at least 100 cells for each sample. Different stages of the cell cycle: G1, S 

phase (S), and mitosis (G2/M). (C) In vivo interaction of Cdc5 with Cse4 is observed in 

G2/M cells. Immunoprecipitated proteins were analyzed by Western blotting with -HA 

(Cdc5), and -Flag (Cse4) antibodies. IP-Flag represents immunoprecipitated samples.  
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FIGURE 2. Cdc5 phosphorylates Cse4 in vitro mediated by its kinase domain. (A) Cdc5 

phosphorylates Cse4 in vitro. Kinase  assays  were  carried out in vitro using purified 

Cse4,  Cdc5 and radiolabeled ATP at 30°C for 60 minutes and products were analyzed by 

SDS gel electrophoresis followed by Coomassie Blue staining and autoradiography of  

radiolabeled proteins. Purified histone H3 with Cdc5 served as control. (B) 

Phosphorylation of Cse4 is mediated by the kinase domain of Cdc5. In vitro kinase 

assays were  carried  out  using purified  Cse4,  Cdc5 or Cdc5kd [K100M, a kinase-dead 

variant of Cdc5; (Ratsima et al., 2011)] and radiolabeled ATP as described above.   
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FIGURE 3. Cdc5 phosphorylates Cse4 at its N-terminus in vitro, and contributes to Cse4 

phosphorylation in vivo. (A) Cse4 peptides phosphorylated in vitro by Cdc5 were 

identified by LC-MS/MS. Phosphorylated serines are marked with in blue colored shade. 
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(B) The region containing the phosphorylated serines within the Cse4 (shaded blue) is 

evolutionarily conserved among yeasts with point centromeres. ClustalW alignment of 

the Cse4 regions of: Sbay = Saccharomyces bayanus, Scer = S. cerevisiae, Sbou = S. 

boulardii, Spas = S. pastorianus, Spar = S. paradoxus, and Sarb = S. arboricola.  (C) 

cse4-9SA mutant is viable. Wild type strain with CSE4::URA3 (pRB199) was 

transformed with vector::LEU2 (YMB10341), CSE4::LEU2 (YMB10049), or cse4-

9SA::LEU2 (YMB10339). Strains were plated on synthetic medium without or with 

counterselection for URA3 by 5′-fluorootic acid (5-FOA) and incubated for 7 days at 

25°C. (D) The levels of Cse4 and Cse4-9SA are not significantly different at the CEN 

chromatin. Wild type (WT, YMB9383), and cse4-9SA (YMB10593) strains were grown 

in YPD to logarithmic phase at 25C, and ChIP for endogenously expressed HA-tagged 

Cse4 or Cse4-9SA was performed using -HA agarose antibodies. Enrichment of Cse4 or 

Cse4-9SA at CEN1, CEN3, CEN5, and a negative control (HML) was determined by 

qPCR and is presented as % input. Average from three biological replicates ± standard 

error is shown. No statistically significant difference was observed between wild type and 

cse4-9SA strains (p-value = 0.05, Student’s t-test). (E) Cse4-9SA protein does not react 

with p-Cse4 antibodies. Wild type strains transformed with GAL1-6HIS-3HA-CSE4 

(YMB10426) or GAL1-6HIS-3HA-cse4-9SA (YMB10427) were grown to logarithmic 

phase of growth in synthetic medium, and gene expression was induced in the presence 

of galactose plus raffinose (2% each) at 25°C for about four generations of growth. 

Protein extracts were prepared for affinity purification of Cse4 or Cse4-9SA strains using 

Ni
2+

-NTA agarose. Eluted proteins were analyzed by Western blotting. Antibodies used 

were α-HA (Cse4) and αp-Cse4 specific (pCse4) antibodies (Boeckmann et al., 2013). 



 47 

(F) Cdc5 contributes to Cse4 phosphorylation in vivo. FACS profiles show G1 

synchronization, and release into pheromone free media to enrich cells in metaphase. 

Wild type (YMB10986) and cdc5-99 (YMB10987) strains expressing GAL1-6HIS-3HA-

CSE4 (pMB1601) were synchronized in G1 (1.5 M -factor) in 1x SC-URA galactose 

plus raffinose (2% each) for 2 hours at 25C. Cells were collected, washed with water, 

and released into pheromone free 1x SC-URA galactose plus raffinose (2% each) at 25 

and 37C for ~110 min (~ 70% cells in metaphase). Proteins extracts were prepared, and 

affinity purified as described in (E). (G) Cell and nuclear morphology of strains from (F) 

post-G1 release into pheromone free media (~110 min) showing enrichment of cells in 

metaphase stage of the cell cycle. Average from three biological replicates  standard 

deviation is shown. (H) Western blotting show reduction of Cse4 phosphorylation in 

cdc5-99 at non-permissive temperature of 37C. Affinity-purified proteins from strains 

grown in (E) were separated on polyacrylamide gels, and transferred to nitrocellulose 

membranes. Blots were probed with antibodies: -HA (total Cse4), and p-Cse4 

antibodies (Boeckmann et al., 2013). Three biological replicates were performed. (I) 

Quantification of relative phosphorylation of Cse4 from Western blots. Ratio of 

phosphorylated Cse4 (pCse4) to the total Cse4 levels (Cse4) in wild type and cdc5-99 

strains was calculated. The histogram represents the average of three biological replicates 

± standard error. **p < 0.01, Student’s t test.  
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FIGURE 4. Cdc5 mediated phosphorylation contributes to faithful chromosome 

segregation and modulates the levels of Mif2 and Mcd1/Scc1 at the CEN chromatin. (A) 

Errors in chromosome segregation are increased in cse4-9SA mcm21 strains. Frequency 

of CF loss in wild type (YPH1018), cse4-S33A (YMB10984), cse4-9SA (YMB10337), 
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mcm21 (YMB10645), cse4-S33A mcm21 (YMB10985), cse4-9SA mcm21 

(YMB10646), ctf19 (YMB10647), and cse4-9SA ctf19 (YMB10648) strains was 

determined using a colony color assay as described in materials and methods. At least 

1000 colonies from three independent transformants were counted and average from 

three biological experiments ± standard error is shown. **p-value <0.01, ns = statistically 

not significant, Student’s t-test. (B) The CEN levels of Mif2 and Mcd1/Scc1 are reduced 

in cse4-9SA mcm21 strains. FACS profiles show DNA content representing G2/M stage 

of the cell cycle. Wild type (YMB9695), cse4-9SA (YMB10593), mcm21 (YMB10740), 

and cse4-9SA mcm21 (YMB10741) carrying Mcd1-GFP were grown in YPD to 

logarithmic phase at 30C, and synchronized in G2/M with nocodazole. ChIP was 

performed using -Mif2 antibodies and -GFP sepharose beads (Mcd1/Scc1) as 

described in materials and methods. (C) Enrichment of Mif2 at CEN3, CAR (134, and 

261) and non-CAR control region (310) on chromosome III was determined by ChIP-

qPCR and is presented as % input. Average values from three biological replicates ± 

standard error is shown. *p-value <0.05, ns = statistically not significant, Student’s t-test. 

(D) Western blotting showing expression of Mif2 in strains used in ChIP experiments. 

Antibodies used were: -Mif2, and -Tub2 (loading control). (E) Enrichment of 

Mcd1/Scc1 at CEN3, CAR (134, and 261) and non-CAR control region (310) on 

chromosome III was determined by ChIP-qPCR and is presented as % input. Average 

values from three biological replicates ± standard error is shown. **p-value <0.01, *p-

value <0.05, ns = statistically not significant, Student’s t-test. (F) Western blotting 

showing expression of Mcd1/Scc1 in strains used in ChIP experiments. Antibodies used 

were: -GFP, and -Tub2 (loading control).  
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FIGURE 5. Loss of Cdc5 from CEN correlates with the reduction in CEN associated 

Cse4 and defects in structural integrity of kinetochores. (A) Expression of Cdc5 is not 

affected in cdc5-99 mutant grown at the non-permissive temperature (37C). Wild type 

(YMB9431), and cdc5-99 (YMB9432) were grown to logarithmic phase at 25C, and 

shifted to non-permissive temperature (37C) for 2.5 hours. Whole cell extracts were 

prepared, and Western blots were done using -Cdc5 and -Tub2 (loading control) 

antibodies. (B) Cdc5-99 does not associate with CEN at the non-permissive temperature 

(37C) in cdc5-99 strain. ChIP was performed in strains as  described in (A) using -
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Cdc5 antibodies. Enrichment of Cdc5 at CEN1, CEN3, CEN5 and a negative control 

(6K120) was determined by qPCR and is presented as % input. Average from three 

biological replicates ± standard error is shown. **p-value <0.01, ns = statistically not 

significant, Student’s t-test. (C) Cdc5 regulates the levels of Cse4 at the CEN. Wild type 

(YMB9383), and cdc5-99 (YMB9175) were grown in YPD to logarithmic phase at 25C, 

and shifted to non-permissive temperature (37C) for 6 hours. ChIP for HA-tagged Cse4 

was performed using -HA agarose antibodies. Enrichment of Cse4 at CEN1, CEN3, 

CEN5, and a negative control (HML) was determined by qPCR and is presented as % 

input. Average from three biological replicates ± standard error is shown. *p-value <0.05, 

ns = statistically not significant, Student’s t-test. (D) Cdc5 is required for the structural 

integrity of kinetochores. Wild type (KBY2012), and cdc5-99 (YMB9367) were grown in 

YPD to logarithmic phase at 25C, and shifted to non-permissive temperature (37C) for 

6 hours. Nuclei were extracted and incubated with 100 Units of DraI restriction 

endonuclease at 37C for 30 min as described in Materials and Methods. DraI 

accessibility at CEN3 and ADP1 (control) chromatin is shown.  Average from three 

biological experiments ± standard error is shown. *p-value <0.05, ns = statistically not 

significant, Student’s t-test. Right insert: schematic modified from our previous study 

(Mishra et al., 2013) for CEN3 and ADP1 regions examined for DraI accessibility.  
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FIGURE 6. Cell cycle regulated interaction of Cdc5 with Cse4 is required for cell 

growth. A Synthetic Physical Interaction (SPI) assay was performed using plasmids 
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expressing Cdc5-GBP, cdc5kd-GBP (kinase dead version) or GBP alone, which were 

introduced into Cse4-GFP (internally tagged), Cep3-GFP and non-GFP strains. (A) The 

cells from the SPI screen were grown overnight in 1x SC-Leu +Ade with 2% galactose 

medium at 23˚C and imaged using fluorescence microscopy. The GBP-RFP and Cdc5-

GBP-RFP signal colocalizes with the GFP signal. Cells with Cse4-GFP and Cdc5-GBP-

RFP show multiple Cse4-GFP foci in contrast to Cse4-GFP cells containing GBP-RFP 

control. (B) Cep3-GFP cells containing either Cdc5-GBP-RFP or GBP-RFP control show 

normal kinetochore foci, each image is 20.6 µm square. (C) Representative images of the 

scanned plates from the SPI screen show 16 replicates for each strain (rows) and plasmid 

(columns) combination. (D) The colony sizes in (C) were measured and log growth ratios 

plotted for the GFP and wild-type strains with pCUP1-GBP as controls for each 

comparison. Error bars indicate standard deviation from the mean. **p-value <0.01, 

Student’s t-test. (E) The forced association of Cdc5 with Cse4 does not arrest cells at a 

specific cell cycle stage. Ten-fold serial dilutions of wild-type and CSE4-YFP (T664) 

strains carrying the GAL1-CDC5 (pHT573), GAL1-CDC5∆C-GBP (pHT580), GAL1-

cdc5kd∆C-GBP (pHT581), and GAL1-Vector (pHT103) plasmids were spotted onto 1x 

SC-Leu media containing either 2% glucose (expression OFF) or 2% galactose 

(expression ON), and grown at 30˚C for two days. (F) Quantification of the cell cycle 

stages of the CSE4-YFP (T664) strain carrying either the GAL1-Cdc5∆C-GBP or the 

GAL1-Vector and GAL1-cdc5kd∆C-GBP control plasmids after growing to logarithmic 

phase in 1x SC-Leu 2% raffinose media, and then swapped to 1x SC-Leu 2% galactose 

media for four hours. The cell cycle stage was assessed by fluorescence microscopy, each 

cell was counted and given the following cell cycle category: non-budded cells were 
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categorized as G1 cells, small-budded as S/G2, large-budded cells with two Cse4-YFP 

foci in the bud neck as Metaphase (M), and large-budded cells with completely separated 

Cse4-YFP foci in the mother and daughter as anaphase/telophase cells. No statistical 

difference was found between Cdc5∆C-GBP to either control as evaluated by Fisher’s 

exact test. Error bars indicate 95% confidence interval. (G) cse4-9SD mutant is unable to 

complement the growth defect of cse4∆ strain. Wild type strain with CSE4::URA3 

(pRB199) was transformed with vector::LEU2 (YMB10341), CSE4::LEU2 

(YMB10049), cse4-9SA::LEU2 (YMB10339), or cse4-9SD::LEU2 (YMB10340). Strains 

were streaked on synthetic medium without or with counterselection for URA3 by 5′-

fluorootic acid (5-FOA) and incubated for 6 days at 25°C. 
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TABLE 1. List of strains, and plasmids used in this study.  

 (A) Saccharomyces cerevisiae strains: 

Strain Genotype Reference 

YMB9325 MATa ura3-52 lys2-801 ade2-101 trp1Δ63 

his3Δ200 leu2Δ1 TRP1::CEN URA3::CEN 

This study 

YMB9326 MATa ura3-52 lys2-801 ade2-101 trp1Δ63 

his3Δ200 leu2Δ1 CDC5-3HA::TRP1 URA3::CEN 

This study 

YMB9327 MATa ura3-52 lys2-801 ade2-101 trp1Δ63 

his3Δ200 leu2Δ1 TRP1::CEN GAL1-FLAG-

CSE4::URA3 

 This study 

YMB9328 MATa ura3-52 lys2-801 ade2-101 trp1Δ63 

his3Δ200 leu2Δ1 CDC5-3HA::TRP1 GAL1-FLAG-

CSE4::URA3 

This study 

YMB10341 MAT cse4∆::kanMX pRS416-CSE4 (pRB199) 

GAL1-Vector::LEU2 

TianYi Zhang 

YMB10049 MAT cse4∆::kanMX pRS416-CSE4 (pRB199) 

GAL1CSE4-3HA::LEU2 

TianYi Zhang 

YMB10339 MAT cse4∆::kanMX pRS416-CSE4 (pRB199) 

GAL1cse4-9SA-3HA::LEU2 

This study 

YMB10340 MAT cse4∆::kanMX pRS416-CSE4 (pRB199) 

GAL1cse4-9SD-3HA::LEU2 

This study 

YPH1018 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

SUP11 

Phil Hieter 

YMB10337 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

SUP11 cse4-9SA-3HA::URA3 

This study 

YMB10645 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

SUP11 mcm21∆::kanMX 

This study 

YMB10646 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

SUP11 mcm21∆::kanMX cse4-9SA-3HA::URA3 

This study 

YMB10647 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

SUP11 ctf19∆::kanMX 

This study 

YMB10648 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

SUP11 ctf19∆::kanMX cse4-9SA-3HA::URA3 

This study 

YMB10984 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

SUP11 cse4-S33A-3HA::NAT 

This study 

YMB10985 MAT ura3-52 lys2-801 ade2-101 trp1∆63 

his3∆200 leu2∆1 CFIII (CEN3L.YPH278) HIS3 

This study 
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SUP11 mcm21∆::kanMX cse4-S33A-3HA::NAT 

YMB9695  MATa MCD1-GFP leu2-3112 ura3-52 his3-11,15 

bar1 GAL+ SPC29-RFP::Hyg 

(Mishra et al., 

2016) 

YMB10593 MATa MCD1-GFP leu2-3112 ura3-52 his3-11,15 

bar1 GAL+ SPC29-RFP::Hyg cse4-9SA-

3HA::URA3 

This study 

YMB10740 MATa MCD1-GFP leu2-3112 ura3-52 his3-11,15 

bar1 GAL+ SPC29-RFP::Hyg mcm21∆::HIS3 

This study 

YMB10741 MATa MCD1-GFP leu2-3112 ura3-52 his3-11,15 

bar1 GAL+ SPC29-RFP::Hyg mcm21∆::HIS3 cse4-

9SA-3HA::URA3 

This study 

YMB9431 MAT ura3-1 leu2-3112 his3-11,15 trp1-1 ade2-1 

can1-100 Smc3-GFP::URA3 

This study 

YMB9432 MAT ura3-1 leu2-3112 his3-11,15 trp1-1 ade2-1 

can1-100 Smc3-GFP::URA3 cdc5-99::HIS3MX 

This study 

YMB9383 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2,3–112 

can1-100 CSE4-3HA::NAT 

This study 

YMB9175 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2,3–112 

can1-100 CSE4-3HA::NAT cdc5-99::HIS3MX 

This study 

KBY2012 MATa trp1Δ63 leu2Δ ura3-52 his3 Δ 200 lys2-8Δ1 

CSE4GFP::TRP1 (pKK1) SPC29CFP::kanMX 

(Haase et al., 2013) 

YMB9367 MATa trp1Δ63 leu2Δ ura3-52 his3 Δ 200 lys2-8Δ1 

CSE4GFP::TRP1 (pKK1) SPC29CFP::kanMX 

cdc5-99::HIS3MX 

This study 

  (Reid et al., 2011) 

 

 

(Huh et al., 2003) 

 

 

This study 

Resgen Inc. 

This study 

GAL1-6HIS-3HA-CSE4::LEU2 

(pMB1515) 

This study 

GAL1-6HIS-3HA-cse4-9SA::LEU2 

(pMB1847)

This study 

GAL1-6HIS-3HA-CSE4::URA3 

(pMB1601)

This study 

GAL1-6HIS-3HA-

CSE4::URA3 (pMB1601)

This study 

(B) List of plasmids:   
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Plasmid Description Reference 

p344 CDC5-3HA::TRP1 D. D’Amours 

pRB199 CSE4-3HA::URA3 R.Baker 

pHT4 pCUP1-GBP-RFP LEU2 (Olafsson and 

Thorpe, 2015) 

pHT425 pCUP- CDC5-GBP LEU2 This study 

pHT442 pCUP1-cdc5kd-GBP LEU2 This study 

pHT103 pGAL1-empty LEU2 (Olafsson and 

Thorpe, 2016) 

pHT573 pGAL1-CDC5 LEU2 This study 

pHT580 pGAL1-CDC5∆C-GBP LEU2 This study 

pHT581 pGAL1-cdc5kd∆C-GBP LEU2 This study 

pMB1515 pGAL1-6HIS-3HA-CSE4 LEU2 This study 

pMB1847 pGAL1-6HIS-3HA-cse4-9SA LEU2 This study 

pMB1601 pGAL1-6HIS-3HA-CSE4 URA3 This study 
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TABLE 2. List of primers used in this study.  

 

Locus  Forward (5’ - 3’) Reverse (5’ - 3’) Reference 

CEN1 CTCGATTTGCATAAGTG

TGCC 

GTGCTTAAGAGTTC

TGTACCAC 

(Choy et al., 2011) 

CEN3 GATCAGCGCCAAACAAT

ATGG 

AACTTCCACCAGTA

AACGTTTC 

(Choy et al., 2011) 

CEN5 AAGAACTATGAATCTGT

AAATGACTGATTCAAT 

CTTGCACTAAACAA

GACTTTATACTACG

TTTAG 

(Choy et al., 2011) 

6K120 AACGTCACTTTTTTTCCA

GGG 

GCAAAGCTAGCTAA

CGAACAA 

(Mishra et al., 

2016) 

HML CACAGCGGTTTCAAAAA

AGCTG 

GGATTTTATTTAAA

AATCGAGAGG 

(Choy et al., 2011) 

CEN3-

DraI 

TTGATGAACTTTTCAAA

GATGAC 

GTCAACGAGTCCTC

TCTGGCTA 

(Choy et al., 2011) 

ADP1 ATCCAAATGTGCTCAAG

ATAGTAGC 

CACCAAACAACATT

TACTAGCAGTG 

(Mishra et al., 

2013) 

134 CCGATGGTTAGGATTTC

CAACG 

GGTTTTCAGAACAG

AATGGGGC 

(Eckert et al., 

2007; Ng et al., 

2009) 

261 TTGCCACAGCCACAGAT

ATAACTG 

GATGGACAAAGCGT

TGTATCCG 

(Eckert et al., 

2007; Ng et al., 

2009) 

310 TCTCGGAATTTATCATG

ACCCAT 

AAACCCTGCACACA

TTTCGT 

(Laloraya et al., 

2000) 

 


