34 research outputs found

    Anodal transcranial direct current stimulation over the primary motor cortex attenuates capsaicin‐induced dynamic mechanical allodynia and mechanical pain sensitivity in humans

    Get PDF
    BACKGROUND: Anodal transcranial direct current stimulation over the primary cortex has been shown to activate regions of the brain involved in the descending modulation of pain sensitivity. However, more research is required in order to dissect the spinal cord analgesic mechanisms associated with the development of central sensitisation. METHODS: In this randomised, double blind, cross over study 12 healthy participants had baseline mechanical stimulus response (S/R) functions measured before and after the development of capsaicin-induced ongoing pain sensitivity. The effects of 20 min of either real or sham transcranial direct current stimulation (tDCS, 2 mA) over the primary motor cortex on dynamic mechanical allodynia (DMA) and mechanical pain sensitivity (MPS) was then investigated. RESULTS: Topical application of capsaicin resulted in an increase in area under the pain ratings curve for both DMA (p < .01) and MPS (p < .01). The effects of tDCS on the area under the curve ratio (i.e. post/pre-treatment) revealed significant analgesic effects over DMA (p < .05) and MPS (p < .05) when compared to sham. CONCLUSIONS: This study demonstrates that anodal tDCS over the primary motor cortex can reduce both dynamic and static forms of mechanical pain sensitivity associated with the development of DMA and MPS, respectively. The use of tDCS may provide a novel mechanism-driven therapy in chronic pain patients with altered mechanical S/R functions

    The comparative hemodynamic efficacy of lower limb muscles using transcutaneous electrical stimulation.

    Get PDF
    Circulation in the limbs can be augmented using transcutaneous electrical stimulation devices. The optimum muscle stimulation sites for enhancement of vascular hemodynamic parameters have not been identified.Seven suitable anatomic sites were identified within the right leg. Twelve healthy participants were recruited (mean age, 23.1 ± 3 years; body mass index, 23.1 ± 3 kg/m(2)). Muscles were stimulated by transcutaneous bipolar electrodes at a current twice their motor threshold, at 1 Hz, for 5 minutes. Hemodynamic ultrasound measurements were taken from the right femoral vein. Laser Doppler measurements from the feet of the stimulated and nonstimulated sides were obtained. Baseline measurements were compared with readings after 5 minutes of stimulation, with device active. Discomfort experienced for stimulation of each muscle was rated out of 100.Hemodynamic changes displayed large intersubject variation, with no muscle statistically superior to the others. All muscles increased peak velocity; contraction of medial gastrocnemius increased time-averaged maximum velocity and volume flow. All muscles increased foot fluximetry (P < .05). Discomfort correlated weakly with current applied. Tibialis anterior and vastus lateralis were most tenable.Transcutaneous stimulation increases hemodynamic parameters significantly, locally and systemically. No optimum stimulation site has been identified, and it is limited by comfort and variability in the subjects response. Gastrocnemius, tibialis anterior, and vastus lateralis all provoke large changes in hemodynamic parameters, but clinical efficacy in disease prevention and management has not been explored

    Frequency-dependent top-down modulation of temporal summation by anodal transcranial direct-current stimulation of the primary motor cortex in healthy adults

    Get PDF
    12 months embargo, now expired.Background Transcranial direct-current stimulation (tDCS) applied over the primary motor cortex has been shown to be effective in the treatment of a number of chronic pain conditions. However, there is a lack of understanding of the top-down analgesic mechanisms involved. Method In this study, we investigated the effects of tDCS on the facilitation of subjective sensory and pain scores using a transcutaneous electrically evoked measure of temporal summation. In this randomized, blinded, cross-over study healthy subjects received a single stimulus given at 0.9× pain threshold (pTh) over the L5 dermatome on the lateral aspect of the right leg, followed by a train of 5 stimuli given at 0.5, 1, 5 and 20 Hz before and after 20 min of sham or anodal tDCS (2 mA) applied over the primary motor cortex. Ratings of sensation and pain intensity were scored on a visual analogue scale (VAS). Results Temporal summation leading to pain only occurred at higher frequencies (5 and 20 Hz). Sham or real tDCS had no effect over temporal summation evoked at 5 Hz; however, there was a significant analgesic effect at 20 Hz. Sham or real tDCS had no effect over acute, single stimuli-evoked responses. Conclusion These results indicate that anodal tDCS applied to the primary motor cortex preferentially modulates temporal summation induced by high-frequency electrical stimulation-induced pain. The inhibitory effects of tDCS appear to be dynamic and dependent on the degree of spinal cord excitability and may explain the higher analgesic efficacy in patients with moderate to severe chronic pain symptoms. Significance The analgesic effects of tDCS are dependent on spinal cord excitability. This work provides insight into top-down modulation during acute pain and temporal summation. This knowledge may explain why tDCS has a higher analgesic efficacy in chronic pain patients

    Reliability of high-density surface electromyography for assessing characteristics of the thoracic erector spinae during static and dynamic tasks

    Get PDF
    PURPOSE: To establish intra- and inter-session reliability of high-density surface electromyography (HDEMG)-derived parameters from the thoracic erector spinae (ES) during static and dynamic goal-directed voluntary movements of the trunk, and during functional reaching tasks. METHODS: Twenty participants performed: 1) static trunk extension, 2) dynamic trunk forward and lateral flexion, and 3) multidirectional functional reaching tasks on two occasions separated by 7.5 ± 1.2 days. Muscle activity was recorded bilaterally from the thoracic ES. Root mean square (RMS), coordinates of the barycentre, mean frequency (MNF), and entropy were derived from the HDEMG signals. Reliability was determined with intraclass correlation coefficient (ICC), coefficient of variation, and standard error of measurement. RESULTS: Good-to-excellent intra-session reliability was found for all parameters and tasks (ICC: 0.79-0.99), whereas inter-session reliability varied across tasks. Static tasks demonstrated higher reliability in most parameters compared to functional and dynamic tasks. Absolute RMS and MNF showed the highest overall reliability across tasks (ICC: 0.66-0.98), while reliability of the barycentre was influenced by the direction of the movements. CONCLUSION: RMS and MNF derived from HDEMG show consistent inter-session reliability in goal-directed voluntary movements of the trunk and reaching tasks, whereas the measures of the barycentre and entropy demonstrate task-dependent reliability

    Diffusion tensor imaging reveals changes in microstructural integrity along compressed nerve roots that correlate with chronic pain symptoms and motor deficiencies in elderly stenosis patients

    Get PDF
    Age-related degenerative changes in the lumbar spine frequently result in nerve root compression causing severe pain and disability. Given the increasing incidence of lumbar spinal disorders in the aging population and the discrepancies between the use of current diagnostic imaging tools and clinical symptoms, novel methods of nerve root assessment are needed. We investigated elderly patients with stenosis at L4-L5 or L5-S1 levels. Diffusion tensor imaging (DTI) was used to quantify microstructure in compressed L5 nerve roots and investigate relationships to clinical symptoms and motor neurophysiology. DTI metrics (i.e. FA, MD, AD and RD) were measured at proximal, mid and distal segments along compressed (i.e. L5) and intact (i.e. L4 or S1) nerve roots. FA was significantly reduced in compressed nerve roots and MD, AD and RD were significantly elevated in the most proximal segment of the nerve root studied. FA was significantly correlated with electrophysiological measures of root function: minimum F-wave latency and peripheral motor conduction time (PMCT). In addition, FA along the compressed root also correlated with leg pain and depression score. There was also a relationship between RD and anxiety, leg pain and disability score and AD correlated with depression score. Taken together, these data show that DTI metrics are sensitive to nerve root compression in patients with stenosis as a result of age-related lumbar degeneration. Critically, they show that the changes in microstructural integrity along compressed L5 nerve roots are closely related to a number of clinical symptoms associated with the development of chronic pain as well as neurophysiological assessments of motor function. These inherent relationships between nerve root damage and phenotype suggest that the use DTI is a promising method as a way to stratify treatment selection and predict outcomes

    A mechanistic study of the tremor associated with epidural anaesthesia for intrapartum caesarean delivery.

    Get PDF
    BACKGROUND: It is not known if the tremor associated with an epidural top-up dose for intrapartum caesarean delivery is thermoregulatory shivering. A tremor is only shivering if it has the same frequency profile as cold stress-induced shivering. Thermoregulatory shivering is a response to a reduction in actual body temperature, whereas non-thermoregulatory shivering may be triggered by a reduction in sensed body temperature. This mechanistic study aimed to compare: 1. the frequency profiles of epidural top-up tremor and cold stress-induced shivering; and 2. body temperature (actual and sensed) before epidural top-up and at the onset of tremor. METHODS: Twenty obstetric patients received an epidural top-up for intrapartum caesarean delivery and 20 non-pregnant female volunteers underwent a cold stress. Tremor, surface electromyography, core temperature, skin temperature (seven sites) and temperature sensation votes (a bipolar visual analog score ranging from -50 to +50 mm) were recorded. RESULTS: The mean (SD) primary oscillation (9.9 (1.9) Hz) frequency of epidural top-up tremor did not differ from that of cold stress-induced shivering (9.0 (1.6) Hz; P=0.194), but the mean (SD) burst frequency was slower (6.1 (1.2) × 10-2 Hz vs 6.9 (0.7) × 10-2 Hz, respectively; P=0.046). Before the epidural top-up dose, the mean (SD) core temperature was 37.6 (0.6) °C. Between the epidural top-up dose and the onset of tremor the mean (SD) core temperature did not change (-0.1 (0.1) °C; P=0.126), the mean (SD) skin temperature increased (+0.4 (0.4) °C; P=0.002) and the mean (SD) temperature sensation votes decreased (-12 (16) mm; P=0.012). CONCLUSION: These results suggest that epidural top-up tremor is a form of non-thermoregulatory shivering triggered by a reduction in sensed body temperature

    Body temperature, cutaneous heat loss and skin blood flow during epidural anaesthesia for emergency caesarean section

    Get PDF
    It is not clear how converting epidural analgesia for labour to epidural anaesthesia for emergency caesarean section affects either cutaneous vasomotor tone or mean body temperature. We hypothesised that topping-up a labour epidural blocks active cutaneous vasodilation (cutaneous heat loss and skin blood flow decrease), and that as a result mean body temperature increases. Twenty women in established labour had body temperature, cutaneous heat loss and skin blood flow recorded before and after epidural top-up for emergency caesarean section. Changes over time were analysed with repeated measures ANOVA. Mean (SD) mean body temperature was 36.8 (0.5)°C at epidural top-up and 36.9 (0.6)°C at delivery. Between epidural top-up and delivery, the mean (SD) rate of increase in mean body temperature was 0.5 (0.5) °C.h-1. Following epidural top-up, chest (p < 0.001) and forearm (p = 0.004) heat loss decreased, but head (p = 0.05), thigh (p = 0.79) and calf (p = 1.00) heat loss did not change. The mean (SD) decrease in heat loss was 15 (19)% (p < 0.001). Neither arm (p = 0.06) nor thigh (p = 0.10) skin blood flow changed following epidural top-up. Despite the lack of change in skin blood flow, the most plausible explanation for the reduction in heat loss and the increase in mean body temperature is blockade of active cutaneous vasodilation. It is possible that a similar mechanism is responsible for the hyperthermia associated with labour epidural analgesia

    Relationships between the integrity and function of lumbar nerve roots as assessed by diffusion tensor imaging and neurophysiology

    Get PDF
    Purpose Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Methods Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. Results DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. Conclusion The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function

    Diffusion tensor imaging of lumbar spinal nerves reveals changes in microstructural integrity following decompression surgery associated with improvements in clinical symptoms: A case report

    Get PDF
    The outcomes from spinal nerve decompression surgery are highly variable with a sizable proportion of elderly foraminal stenosis patients not regaining good pain relief. A better understanding of nerve root compression before and following decompression surgery and whether these changes are mirrored by improvements in symptoms may help to improve clinical decision-making processes. This case study used a combination of diffusion tensor imaging (DTI), clinical questionnaires and motor neurophysiology assessments before and up to 3 months following spinal decompression surgery. In this case report, a 70-year-old women with compression of the left L5 spinal nerve root in the L5-S1 exit foramina was recruited to the study. At 3 months following surgery, DTI revealed marked improvements in left L5 microstructural integrity to a similar level to that seen in the intact right L5 nerve root. This was accompanied by a gradual improvement in pain-related symptoms, mood and disability score by 3 months. Using this novel multimodal approach, it may be possible to track concurrent improvements in pain-related symptoms, function and microstructural integrity of compressed nerves in elderly foraminal stenosis patients undergoing decompression surgery
    corecore