13 research outputs found

    Tunisian population of Mycosphaerella graminicola is still sensitive to strobilurin fungicides.

    No full text
    International audienceSeptoria tritici blotch caused by the fungal pathogen Mycosphaerella graminicola (anamorph: Zymoseptoria tritici) is one of the most frequently occurring diseases on both bread and durum wheat crops worldwide. One hundred and sixty four durum wheat-adapted isolates of this fungus were sampled during the 2012 growing season from five distinct geographical locations of Tunisia (Bizerte, Béja, Kef, Jendouba and Siliana) in order to examine the status of strobilurin resistance of M. graminicola in this country. Resistance was assessed by screening the G143A substitution (Cytochrome b) which confers resistance to this class of fungicides. We used a PCR-based mismatch mutation assay allowing the amplification of either G143 (sensitive) or A143 (resistant) allele. All isolates were found to contain the sensitive wild-type G143 allele and therefore to be sensitive. Our study confirms recent reports on M. graminicola in Tunisia and shows that the Tunisian population of the fungus remains fully sensitive to strobilurins. A durability-oriented management of strobilurin applications in Tunisia is thereby recommended to prevent the development and widespread of the corresponding resistance such as in Europe, where pathogen populations are nowadays fully resistant to strobilurins

    Are ineffective defence reactions potential target for induced resistance during the compatible wheat-powdery mildew interaction?

    Full text link
    International audiencePowdery mildew caused by Blumeria graminis f.sp. tritici, an obligate aerial biotrophic fungus, would be one of the most damaging wheat (Triticum aestivum) diseases without the extensive use of conventional fungicides. In our study, the expression levels of some basal defence-related genes were investigated during a compatible interaction in order to evaluate wheat reactions to infection, along with the different stages of the infectious process in planta. As fungal conidia initiated their germination and developed appressorial germ tube (AGT), early defence reactions involved the expression of a lipoxygenase (LOX)- and an oxalate oxidase (OXO)-encoding genes, followed by activations of corresponding LOX (EC 1.13.11.12) and OXO (EC 1.2.3.4) activities, respectively. When penetration of AGT took place, up-regulation of chitinases (CHI) and PR1-encoding genes expression occurred along with an increase of CHI (EC 3.2.1.14) activity. Meanwhile, expression of a phenylalanine ammonia-lyase-encoding gene also took place. Up-regulation of a phospholipase C- and lipid transfer proteins-encoding genes expression occurred during the latest stages of infection. Neither the phi glutathione S-transferase (GST)-encoding gene expression nor the GST (EC 2.5.1.13) activity was modified upon wheat infection by powdery mildew. Whether these defence reactions during such a compatible interaction are markers of immunity or susceptibility, and whether they have the ability to contribute to protection upon modulation of their timing and their intensity by resistance inducers are discussed

    Evolution of Mycosphaerella graminicola at the wheat leaf level and at the field level.

    No full text
    International audienceEvolution of M. graminicola wheat field populations from a given French county (Morbihan, 56) between years 2005 and 2006 was investigated for thirty seven strains using molecular fingerprinting by microsatellite markers (ST1A4, ST1E3, ST1E7, and ST1D7), and SSCP analysis study of partial actin and beta-tubulin encoding sequences. In addition, twenty nine strains collected from 3 distinct lesions on a same wheat leaf in 2006 in another French county (Nord, 59) were also investigated for genetic diversity. At the field level, we observed similar gene diversity in the 2005 and in the 2006 populations, with no common clones between the two years. This indicates frequent sexual recombination undergone by the fungus. When considering each marker independently and comparing genetic variability of the two populations, we noticed a decrease in genetic variability of the 2006 strains for three of them (ST1A4, ST1D7 and the partial sequence of actin) and an increase for ST1E3, ST1E7 and the partial sequence of beta-tubulin, revealing the importance of the chosen markers. At the lesion level, 69% of the studied strains were haplotypes with 31% of the clonal population found in 2 lesions out of 3. This suggests that at least parts of the lesions were formed after asexual reproduction and dissemination of pycnidiospores by splashing. We also confirmed the exploitative competition that exists between the strains at the lesion level

    Arbuscular Mycorrhizal Fungi as Potential Bioprotectants Against Aerial Phytopathogens and Pests

    No full text
    International audienceIn the context of an increasing worldwide food requirement, the control of crop diseases is crucial to guarantee high and stable yield, as well as sanitary quality. An environmentally friendly contribution to this could be biocontrol using beneficial microorganisms, such as arbuscular mycorrhizal fungi (AMF). AMF establish symbiosis with their host plants, thus influencing their growth, but they also induce tolerance to environmental stresses. Among stresses that can be alleviated through AMF inoculation, plant attacks by aerial pathogens and pests have so far been underestimated. Therefore, we present here an overview of studies focusing on AMF-mediated bioprotection against aerial pathogens and pests. Obtained protection is mainly due to changes in host nutrition and induction of defense following the establishment of arbuscular mycorrhizal symbiosis. This protection can vary greatly depending on different factors such as host genotype, AMF species involved, pest and pathogen lifestyles, interactions between AMF and other microorganisms, or even crop management practices. Finally, some future challenges for the use of AMF in biocontrol are discussed

    Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew

    No full text
    International audienceA potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents

    Brown alga Ascophyllum nodosum extract-based product, Dalgin Active®, triggers defense mechanisms and confers protection in both bread and durum wheat against Zymoseptoria tritici

    No full text
    International audienceAlternative control strategies are increasingly encouraged to develop sustainable crop protection. In this aim, we assessed the ability of Dalgin Active ® , an Ascophyllum nodosum extract-based product, to induce resistance in bread wheat and durum wheat against Zymoseptoria tritici, a major fungal pathogen on these crops. Foliar application of the product provided a strong and significant reduction of disease intensity on both wheat species without any direct effect against the pathogen. Infection process monitoring revealed that Dalgin Active ® did not prevent fungal epiphytic growth and leaf colonization, but its application results in an inhibition of sporulation as well as fungal cell wall-degrading enzyme and protease activities. During the early stages of infection, Dalgin Active ® activated several plant defense markers on both wheat species, including PR protein, antioxidant metabolism, phenylpropanoid, and octadecanoid-based pathways. Although few differences were recorded, the induced defense reaction patterns were overall similar in both wheat species, suggesting that Dalgin Active ® could be used to biocontrol Z. tritici on both crops
    corecore