766 research outputs found

    Effects of Turbid Media Optical Properties on Object Visibility in Subsurface Polarization Imaging

    Get PDF
    doi:10.1364/AO.45.005532We studied the effectiveness of using polarized illumination and detection to enhance the visibility of targets buried in highly scattering media. The effects of background optical properties including scattering coefficient, absorption coefficient, and anisotropy on image visibility were examined. Both linearly and circularly polarized light were used in the imaging. Three different types of target were investigated: scattering, absorption, and reflection. The experimental results indicate that target visibility improvement achieved by a specific polarization method depends on both the background optical properties and the target type. By analyzing all polarization images, it is possible to reveal certain information about target or the scattering background.The authors acknowledge financial support by a research board grant from the University of Missouri-Columbia

    Continuous variable quantum cryptography using coherent states

    Get PDF
    We propose several methods for quantum key distribution (QKD) based upon the generation and transmission of random distributions of coherent or squeezed states, and we show that they are are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50 %, but they do not rely on "non-classical" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, that limits the signal to noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with gaussian statistics.Comment: 5 pages, 1 figure. In v2 minor rewriting for clarity, references adde

    Continuous Variable Quantum State Sharing via Quantum Disentanglement

    Full text link
    Quantum state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multi-partite quantum networks. Quantum state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret state distribution, and a class of "quantum disentangling" protocols for the state reconstruction. We demonstrate a quantum state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, whilst individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F = 0.73. A result achievable only by using quantum resources.Comment: Published, Phys. Rev. A 71, 033814 (2005) (7 figures, 11 pages

    Quantum key distribution using gaussian-modulated coherent states

    Full text link
    Quantum continuous variables are being explored as an alternative means to implement quantum key distribution, which is usually based on single photon counting. The former approach is potentially advantageous because it should enable higher key distribution rates. Here we propose and experimentally demonstrate a quantum key distribution protocol based on the transmission of gaussian-modulated coherent states (consisting of laser pulses containing a few hundred photons) and shot-noise-limited homodyne detection; squeezed or entangled beams are not required. Complete secret key extraction is achieved using a reverse reconciliation technique followed by privacy amplification. The reverse reconciliation technique is in principle secure for any value of the line transmission, against gaussian individual attacks based on entanglement and quantum memories. Our table-top experiment yields a net key transmission rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per second for a line with losses of 3.1 dB. We anticipate that the scheme should remain effective for lines with higher losses, particularly because the present limitations are essentially technical, so that significant margin for improvement is available on both the hardware and software.Comment: 8 pages, 4 figure

    No-cloning theorem and teleportation criteria for quantum continuous variables

    Full text link
    We discuss the criteria presently used for evaluating the efficiency of quantum teleportation schemes for continuous variables. Using an argument based upon the difference between 1-to-2 quantum cloning (quantum duplication) and 1-to-infinity cloning (classical measurement), we show that a fidelity value larger than 2/3 is required for successful quantum teleportation of coherent states. This value has not been reached experimentally so far.Comment: 4 pages, 1 figure, submitted to Phys. Rev.

    Anderson-Yuval approach to the multichannel Kondo problem

    Full text link
    We analyze the structure of the perturbation expansion of the general multichannel Kondo model with channel anisotropic exchange couplings and in the presence of an external magnetic field, generalizing to this case the Anderson-Yuval technique. For two channels, we are able to map the Kondo model onto a generalized resonant level model. Limiting cases in which the equivalent resonant level model is solvable are identified. The solution correctly captures the properties of the two channel Kondo model, and also allows an analytic description of the cross-over from the non Fermi liquid to the Fermi liquid behavior caused by the channel anisotropy.Comment: 23 pages, ReVTeX, 4 figures av. on reques

    Robust transmission and reconstruction of fragile optical states

    Get PDF
    We propose a scheme by which signals carried by a coherent optical source close to the quantum noise limit can be amplified, making them more robust against losses, and then reconstructed at a remote site. The amplitude signal-to-noise ratio, the absolute amplitude noise level, and optical coherence are preserved. The scheme utilizes electro-optic feedforward and laser injection locking. We investigate the performance of the scheme as a quantum nondemolition device. [S1050-2947(97)02411-6]

    Localization and fluctuations of local spectral density on tree-like structures with large connectivity: Application to the quasiparticle line shape in quantum dots

    Full text link
    We study fluctuations of the local density of states (LDOS) on a tree-like lattice with large branching number mm. The average form of the local spectral function (at given value of the random potential in the observation point) shows a crossover from the Lorentzian to semicircular form at α1/m\alpha\sim 1/m, where α=(V/W)2\alpha= (V/W)^2, VV is the typical value of the hopping matrix element, and WW is the width of the distribution of random site energies. For α>1/m2\alpha>1/m^2 the LDOS fluctuations (with respect to this average form) are weak. In the opposite case, α<1/m2\alpha<1/m^2, the fluctuations get strong and the average LDOS ceases to be representative, which is related to the existence of the Anderson transition at αc1/(m2log2m)\alpha_c\sim 1/(m^2\log^2m). On the localized side of the transition the spectrum is discrete, and LDOS is given by a set of δ\delta-like peaks. The effective number of components in this regime is given by 1/P1/P, with PP being the inverse participation ratio. It is shown that PP has in the transition point a limiting value PcP_c close to unity, 1Pc1/logm1-P_c\sim 1/\log m, so that the system undergoes a transition directly from the deeply localized to extended phase. On the side of delocalized states, the peaks in LDOS get broadened, with a width exp{constlogm[(ααc)/αc]1/2}\sim\exp\{-{const}\log m[(\alpha-\alpha_c)/\alpha_c]^{-1/2}\} being exponentially small near the transition point. We discuss application of our results to the problem of the quasiparticle line shape in a finite Fermi system, as suggested recently by Altshuler, Gefen, Kamenev, and Levitov.Comment: 12 pages, 1 figure. Misprints in eqs.(21) and (28) corrected, section VII added. Accepted for publication in Phys. Rev.

    REDUCE-IT USA: Results From the 3146 Patients Randomized in the United States.

    Get PDF
    BackgroundSome trials have found that patients from the United States derive less benefit than patients enrolled outside the United States. This prespecified REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl - Intervention Trial) subgroup analysis was conducted to determine the degree of benefit of icosapent ethyl in the United States.MethodsREDUCE-IT randomized 8179 statin-treated patients with qualifying triglycerides ≥135 and &lt;500 mg/dL and low-density lipoprotein cholesterol &gt;40 and ≤100 mg/dL and a history of atherosclerosis or diabetes mellitus to icosapent ethyl 4 g/d or placebo. The primary composite end point was cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or hospitalization for unstable angina. The key secondary composite end point was cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. A hierarchy was prespecified for examination of individual and composite end points.ResultsA total of 3146 US patients (38.5% of the trial) were randomized and followed for a median of 4.9 years; 32.3% were women and 9.7% were Hispanic. The primary composite end point occurred in 24.7% of placebo-treated patients versus 18.2% of icosapent ethyl-treated patients (hazard ratio [HR], 0.69 [95% CI, 0.59-0.80]; P=0.000001); the key secondary composite end point occurred in 16.6% versus 12.1% (HR, 0.69 [95% CI, 0.57-0.83]; P=0.00008). All prespecified hierarchical end points were meaningfully and significantly reduced, including cardiovascular death (6.7% to 4.7%; HR, 0.66 [95% CI, 0.49-0.90]; P=0.007), myocardial infarction (8.8% to 6.7%; HR, 0.72 [95% CI, 0.56-0.93]; P=0.01), stroke (4.1% to 2.6%; HR, 0.63 [95% CI, 0.43-0.93]; P=0.02), and all-cause mortality (9.8% to 7.2%; HR, 0.70 [95% CI, 0.55-0.90]; P=0.004); for all-cause mortality in the US versus non-US patients, Pinteraction=0.02. Safety and tolerability findings were consistent with the full study cohort.ConclusionsWhereas the non-US subgroup showed significant reductions in the primary and key secondary end points, the US subgroup demonstrated particularly robust risk reductions across a variety of individual and composite end points, including all-cause mortality.Clinical trial registrationURL: https://www.clinicaltrials.gov. Unique identifier: NCT01492361

    Pedestrian Approach to the Two-Channel Kondo Model

    Full text link
    We reformulate the two-channel Kondo model to explicitly remove the unscattered charge degrees of freedom. This procedure permits us to move the non-Fermi liquid fixed point to infinite coupling where we can apply a perturbative strong-coupling expansion. The fixed point Hamiltonian involves a three-body Majorana zero mode whose scattering effects give rise to marginal self-energies. The compactified model is the N=3 member of a family of "O(N)" Kondo models that can be solved by semiclassical methods in the large NN limit. For odd NN, {\em fermionic} "Kink" fluctuations about the N=N=\infty mean-field theory generate a fermionic NN-body bound-state which asymptotically decouples at low energies. For N=3, our semi-classical methods fully recover the non-Fermi liquid physics of the original two channel model. Using the same methods, we find that the corresponding O(3) Kondo lattice model develops a spin-gap and a gapless band of coherently propagating three-body bound-states. Its strong-coupling limit offers a rather interesting realization of marginal Fermi liquid behavior.Comment: 17 pages, Revtex 3.0. Replaced with fully compiled postscript file
    corecore