203 research outputs found

    Structural Origins of the Anisotropic Thermal Expansion of BINOL Crystals

    Get PDF
    \ua9 The Author(s) 2024.vMeasurement of the unit cell of (R)-BINOL over a 200\ub0 temperature range (300–100 K) reveals an anisotropic contraction where the c-axis contracts ca. 2.3% compared to a ca. 0.45% contraction of the a and b axes, a ca. six-fold difference in linear thermal expansion coefficient. This contraction corresponds to a decrease in the helical pitch of the 31 screw axis in the [001] direction. The anisotropic nature of the contraction is rationalised by a thorough analysis of intermolecular contacts within the crystal and their impact on the conformation of the molecule and crystal packing. Graphical Abstract: The crystal structure of (R)-BINOL exhibits a pronounced anisotropic thermal expansion. (Figure presented.)

    Lithium, sodium and potassium enolate aggregates and monomers: syntheses and structures

    Get PDF
    \ua9 2024 The Royal Society of Chemistry. In this Article, we report the syntheses and comparative structural studies of lithium, sodium, and potassium anthracen-9-yl enolates, as their aggregates (Li, Na: hexamer; K: tetramer) and ligand-stabilized monomers (for Li and Na). The monomers add new members to the rare collection of group-1 metal monomeric enolates. Moreover, the series covers different group-1 metal cations (Li+, Na+ and K+) and aggregate sizes, allowing comparative structural studies to elucidate how the metal identity and aggregate size influence the enolate structure

    A state of independents: rationalising the high <em>Z</em>\u27 crystal structures of shikimate esters

    Get PDF
    Zˈ is a parameter used to denote the number of symmetry-independent molecules in the asymmetric unit of a crystal structure. High Zˈ (&gt;1) crystal structures are relatively uncommon and are thought to arise through competition between intermolecular interactions of similar strength. As such high Zˈ crystal structures are challenging to predict, new examples are valuable in improving understanding in the field. Herein, we report the X-ray crystal structures of a series of shikimate esters, the asymmetric units of which exhibit high Zˈ values. Of special interest is the crystal structure of methyl shikimate, the asymmetric unit of which comprises 12 independent molecules; Zˈ = 12. This uncommonly large Zˈ value arises through a combination of factors, including the intrinsic homochirality of the molecule, the conformational inflexibility of the cyclohexene ring, the presence of multiple hydrogen bonding motifs, and both the cis- and trans-conformers of the ester moiety. Comparison of the X-ray crystal structures of shikimic acid, methyl shikimate, ethyl shikimate, and iso-propyl shikimate suggests that instances of high Zˈ in this series correlate with specific hydrogen bonding motifs influenced by the steric bulk of the ester. The results of this study provide important insights into factors that influence the formation of organic crystal structures where the value of Zˈ is greater than 1

    Alkali Metal Complexes of Phosphine-Borane-Substituted Benzyl Ligands and Their Application in the Synthesis of B-H\ub7\ub7\ub7Sn Stabilized Dialkylstannylenes

    Get PDF
    \ua9 2024 The Authors. Published by American Chemical Society.The benzyl-substituted phosphine-boranes PhCH2P(BH3)R2 [R = iPr (1H), Ph (2H), Cy (3H)] are accessible through either the reaction between R2PCl and PhCH2MgBr, followed by treatment with BH3\ub7SMe2 or the reaction between R2P(BH)3Li and PhCH2Br. Treatment of 1H, 2H, or 3H with nBuLi, PhCH2Na, or PhCH2K gave the corresponding alkali metal complexes [{iPr2P(BH3)CHPh}Li(THF)]2 (1Li), [{Ph2P(BH3)CHPh}Li(OEt2)2] (2Li), [{Cy2P(BH3)CHPh}Li(TMEDA)] (3Li), [iPr2P(BH3)CHPh]Na (1Na), [{Ph2P(BH3)CHPh}Na(THF)2]2 (2Na), [Cy2P(BH3)CHPh]Na(THF)0.5 (3Na), [{iPr2P(BH3)CHPh}K]∞ (1K), [{Ph2P(BH3)CHPh}K(THF)]∞ (2K), and [{Cy2P(BH3)CHPh}K.0.5PhMe]∞ (3K). X-ray crystallography revealed that, while 2Li and 3Li crystallize as monomers, 1Li and 2Na crystallize as borane-bridged dimers. The potassium complexes 1K, 2K, and 3K all crystallize with polymeric structures, in which the monomer units are linked to each other through a range of both bridging BH3 groups and multihapto interactions between the potassium cations and the aromatic rings. The reactions between two equivalents of either 1Li or 3Li and Cp2Sn gave the corresponding dialkylstannylenes [{R2P(BH3)CHPh}2Sn] [R = iPr (1Sn), Cy (3Sn)]. These compounds were isolated as mixtures of the rac and meso diastereomers. X-ray crystallography reveals that rac-1Sn and rac-3Sn crystallize as discrete monomers each exhibiting two agostic-type B-H\ub7\ub7\ub7Sn contacts

    Synthesis, Structure and Stereodynamics of Atropisomeric <em>N</em>‑Chloroamides

    Get PDF
    Atropisomeric N-chloroamides were efficiently accessed by electrophilic halogenation of ortho-substituted secondary anilides. The stereodynamics of atropisomerism in these novel scaffolds was interrogated by detailed experimental and computational studies, revealing that racemization is correlated with amide isomerization. The stereoelectronic nature of the amide was shown to significantly influence racemization rates, with potentially important implications for other C-N atropisomeric scaffolds

    Measurement and Computation of Movement of Bromide Ions and Carbofuran in Ridged Humic-Sandy Soil

    Get PDF
    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil–plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1–0.2 m layer of the ridges, while it was in the 0.3–0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields
    corecore