12 research outputs found

    Methodological quality of a systematic review on physical therapy for temporomandibular disorders: influence of hand search and quality scales

    Get PDF
    The validity of a systematic review depends on completeness of identifying randomised clinical trials (RCTs) and the quality of the included RCTs. The aim of this study was to analyse the effects of hand search on the number of identified RCTs and of four quality lists on the outcome of quality assessment of RCTs evaluating the effect of physical therapy on temporomandibular disorders. In addition, we investigated the association between publication year and the methodological quality of these RCTs. Cochrane, Medline and Embase databases were searched electronically. The references of the included studies were checked for additional trials. Studies not electronically identified were labelled as “obtained by means of hand search”. The included RCTs (69) concerning physical therapy for temporomandibular disorders were assessed using four different quality lists: the Delphi list, the Jadad list, the Megens & Harris list and the Risk of Bias list. The association between the quality scores and the year of publication were calculated. After electronic database search, hand search resulted in an additional 17 RCTs (25%). The mean quality score of the RCTs, expressed as a percentage of the maximum score, was low to moderate and varied from 35.1% for the Delphi list to 54.3% for the Risk of Bias list. The agreement among the four quality assessment lists, calculated by the Interclass Correlation Coefficient, was 0.603 (95% CI, 0.389; 0.749). The Delphi list scored significantly lower than the other lists. The Risk of Bias list scored significantly higher than the Jadad list. A moderate association was found between year of publication and scores on the Delphi list (r = 0.50), the Jadad list (r = 0.33) and the Megens & Harris list (r = 0.43)

    Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant

    Get PDF
    BACKGROUND: Inositol 1,4,5trisphosphate (IP(3)) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab)) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab) alleles are phenotypically normal. However, the presence of one Plcd3(mNab) allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3(mNab) mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab) mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface

    Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening.

    No full text
    A large variety of mouse models for human skin, hair, and nail diseases are readily available from investigators and vendors worldwide. Mouse skin is a simple organ to observe lesions and their response to therapy, but identifying and monitoring the progress of treatments of mouse skin diseases can still be challenging. This chapter provides an overview on how to use the laboratory mouse as a preclinical tool to evaluate efficacy of new compounds or test potential new uses for compounds approved for use for treating an unrelated disease. Basic approaches to handling mice, applying compounds, and quantifying effects of the treatment are presented. Methods Mol Biol 2016; 1438:199-22

    The concept of gut rehabilitation and the future of visceral transplantation

    No full text
    corecore