442 research outputs found

    Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene

    Full text link
    The quantum-Hall-effect (QHE) occurs in topologically-ordered states of two-dimensional (2d) electron-systems in which an insulating bulk-state coexists with protected 1d conducting edge-states. Owing to a unique topologically imposed edge-bulk correspondence these edge-states are endowed with universal properties such as fractionally-charged quasiparticles and interference-patterns, which make them indispensable components for QH-based quantum-computation and other applications. The precise edge-bulk correspondence, conjectured theoretically in the limit of sharp edges, is difficult to realize in conventional semiconductor-based electron systems where soft boundaries lead to edge-state reconstruction. Using scanning-tunneling microscopy and spectroscopy to follow the spatial evolution of bulk Landau-levels towards a zigzag edge of graphene supported above a graphite substrate we demonstrate that in this system it is possible to realize atomically sharp edges with no edge-state reconstruction. Our results single out graphene as a system where the edge-state structure can be controlled and the universal properties directly probed.Comment: 16 pages, 4 figure

    Chronic Granulomatous Disease; fundamental stages in our understanding of CGD

    Get PDF
    It has been 50 years since chronic granulomatous disease was first reported as a disease which fatally affected the ability of children to survive infections. Various milestone discoveries from the insufficient ability of patients' leucocytes to destroy microbial particles to the underlying genetic predispositions through which the disease is inherited have had important consequences. Longterm antibiotic prophylaxis has helped to fight infections associated with chronic granulomatous disease while the steady progress in bone marrow transplantation and the prospect of gene therapy are hailed as long awaited permanent treatment options. This review unearths the important findings by scientists that have led to our current understanding of the disease

    Prevalence and determinants of human papillomavirus genital infection in men

    Get PDF
    Four-hundred-forty-five husbands of women with invasive cervical carcinoma, 165 of women with in situ cervical cancer, and 717 of control women (age range 19–82 years) were interviewed and a sample of exfoliated cells from the penis obtained in seven case–control studies conducted by the International Agency for Research on Cancer. The characteristics of human papillomavirus-positive and human papillomavirus-negative husbands were compared using odds ratios and 95% confidence intervals. Thirteen per cent of the husbands of control women, 18% of the husbands of women with invasive cervical carcinoma, and 21% of the husbands of in situ cervical carcinoma women were positive for penile human papillomavirus DNA. Human papillomavirus 16 was detected in 45 husbands, human papillomavirus 18, 31 or 33 in 19, and human papillomavirus 6/11 in 6, but the majority of human papillomavirus infection (158) was with other or unspecified human papillomavirus types. The same human papillomavirus type was seldom identified in both husband and wife. The strongest variation in penile human papillomavirus infection was by country, with percentages among the husbands of control women ranging between 3% in Spain and 39% in Brazil. Having had over 50 lifetime sexual partners, compared with only one, was associated with an odds ratio of 2.3

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Predicting clinically unrecognized coronary artery disease: use of two- dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>2-D Echo is often performed in patients without history of coronary artery disease (CAD). We sought to determine echo features predictive of CAD.</p> <p>Methods</p> <p>2-D Echo of 328 patients without known CAD performed within one year prior to stress myocardial SPECT and angiography were reviewed. Echo features examined were left ventricular and atrial enlargement, LV hypertrophy, wall motion abnormality (WMA), LV ejection fraction (EF) < 50%, mitral annular calcification (MAC) and aortic sclerosis/stenosis (AS). High risk myocardial perfusion abnormality (MPA) was defined as >15% LV perfusion defect or multivessel distribution. Severe coronary artery stenosis (CAS) was defined as left main, 3 VD or 2VD involving proximal LAD.</p> <p>Results</p> <p>The mean age was 62 ± 13 years, 59% men, 29% diabetic (DM) and 148 (45%) had > 2 risk factors. Pharmacologic stress was performed in 109 patients (33%). MPA was present in 200 pts (60%) of which, 137 were high risk. CAS was present in 166 pts (51%), 75 were severe. Of 87 patients with WMA, 83% had MPA and 78% had CAS. Multivariate analysis identified age >65, male, inability to exercise, DM, WMA, MAC and AS as independent predictors of MPA and CAS. Independent predictors of high risk MPA and severe CAS were age, DM, inability to exercise and WMA.</p> <p>2-D echo findings offered incremental value over clinical information in predicting CAD by angiography. (Chi square: 360 vs. 320 p = 0.02).</p> <p>Conclusion</p> <p>2-D Echo was valuable in predicting presence of physiological and anatomical CAD in addition to clinical information.</p

    CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer

    Get PDF
    BACKGROUND: The E-cadherin gene (CDH1) maps, at chromosome 16q22.1, a region often associated with loss of heterozygosity (LOH) in human breast cancer. LOH at this site is thought to lead to loss of function of this tumor suppressor gene and was correlated with decreased disease-free survival, poor prognosis, and metastasis. Differential CpG island methylation in the promoter region of the CDH1 gene might be an alternative way for the loss of expression and function of E-cadherin, leading to loss of tissue integrity, an essential step in tumor progression. METHODS: The aim of our study was to assess, by Methylation-Specific Polymerase Chain Reaction (MSP), the methylation pattern of the CDH1 gene and its possible correlation with the expression of E-cadherin and other standard immunohistochemical parameters (Her-2, ER, PgR, p53, and K-67) in a series of 79 primary breast cancers (71 infiltrating ductal, 5 infiltrating lobular, 1 metaplastic, 1 apocrine, and 1 papillary carcinoma). RESULTS: CDH1 hypermethylation was observed in 72% of the cases including 52/71 ductal, 4/5 lobular carcinomas and 1 apocrine carcinoma. Reduced levels of E-cadherin protein were observed in 85% of our samples. Although not statistically significant, the levels of E-cadherin expression tended to diminish with the CDH1 promoter region methylation. In the group of 71 ductal cancinomas, most of the cases of showing CDH1 hypermethylation also presented reduced levels of expression of ER and PgR proteins, and a possible association was observed between CDH1 methylation and ER expression (p = 0.0301, Fisher's exact test). However, this finding was not considered significant after Bonferroni correction of p-value. CONCLUSION: Our preliminary findings suggested that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression in a subgroup of cases characterized by loss of expression of other important genes to the mammary carcinogenesis process, probably due to the disruption of the mechanism of maintenance of DNA methylation in tumoral cells
    corecore