12 research outputs found

    Toxic metal enrichment and boating intensity: sediment records of antifoulant copper in shallow lakes of eastern England

    Get PDF
    Tributyltin (TBT), an aqueous biocide derived from antifouling paint pollution, is known to have impacted coastal marine ecosystems, and has been reported in the sediment of the Norfolk and Suffolk Broads, a network of rivers and shallow lakes in eastern England. In the marine environment, the 1987 TBT ban has resulted in expanded use of alternative biocides, raising the question of whether these products too have impacted the Broads ecosystem and freshwaters in general. Here we examine the lake sediment record in the Norfolk and Suffolk Broads for contamination by copper (Cu) (as an active biocide agent) and zinc (Zn) (as a component of booster biocides), to assess their occurrence and potential for causing environmental harm in freshwater ecosystems. We find that, after the introduction of leisure boating, there is a statistically significant difference in Cu enrichment between heavily and lightly boated sites, while no such difference exists prior to this time. At the heavily boated sites the onset of Cu enrichment coincides with a period of rapid increase in leisure boating. Such enrichment is maintained to the present day, with some evidence of continued increase. We conclude that Cu-based antifouling has measurably contaminated lakes exposed to boating, at concentrations high enough to cause ecological harm. Similar findings can be expected at other boated freshwater ecosystems elsewhere in the world

    Eutrophication erodes inter-basin variation in macrophytes and co-occurring invertebrates in a shallow lake: combining ecology and palaeoecology

    Get PDF
    Aquatic biodiversity is commonly linked with environmental variation in lake networks, but less is known about how local factors may influence within-lake biological heterogeneity. Using a combined ecological and multi-proxy palaeoecological approach we investigated long-term changes in the pathways and processes that underlie eutrophication and water depth effects on lake macrophyte and invertebrate communities across three basins in a shallow lake鈥擟astle Lough, Northern Ireland, UK. Contemporary data allow us to assess how macrophyte assemblages vary in composition and heterogeneity according to basin-specific factors (e.g. variation in water depth), while palaeoecological data (macrophytes and co-occurring invertebrates) enable us to infer basin-specific impacts and susceptibilities to nutrient-enrichment. Results indicate that variability in water depth promotes assemblage variation amongst the lake basins, stimulating within-lake macrophyte assemblage heterogeneity and hence higher lake biodiversity. The palaeo-data indicate that eutrophication has acted as a strong homogenising agent of macrophyte and invertebrate diversities and abundances over time at the whole-lake scale. This novel finding strongly suggests that, as eutrophication advances, the influence of water depth on community heterogeneity is gradually eroded and that ultimately a limited set of eutrophication-tolerant species will become homogeneously distributed across the entire lake.漏 Springer Science+Business Media Dordrecht 2017. This is a post-peer-review, pre-copyedit version of an article published in Journal of Paleolimnology. The final authenticated version is available online at: http://dx.doi.org/0.1007/s10933-017-9950-6. You are advised to consult the publisher鈥檚 version if you wish to cite from it

    Basic Concepts of Differentiation and Growth of Cells

    No full text
    corecore