15 research outputs found

    Absolute crystal and magnetic chiralities in the langasite compound Ba3NbFe3Si2O14 determined by polarized neutron and x-ray scattering

    Get PDF
    We present a combined polarized neutron and x-ray scattering study on two enantiopure langasite single crystals aimed at the determination of their absolute structural and magnetic chiralities and the coupling between them. Our respective data sets unambiguously reveal two samples of opposite structural chirality, where the magnetic handedness is pinned by the structural one. Simple energy considerations of the magnetic exchange and single-ion anisotropy parameters reveal that it is not the Dzyaloshinskii-Moriya interaction but the local single-ion anisotropy on a triangular plaquette which plays a key role in stabilizing one of the two magnetic helices

    Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas

    No full text
    International audienceThe combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance

    Adaptive Sampling of Large Deviations

    Get PDF
    International audienceWe introduce and test an algorithm that adaptively estimates large deviation functions characterizing the fluctuations of additive functionals of Markov processes in the long-time limit. These functions play an important role for predicting the probability and pathways of rare events in stochastic processes, as well as for understanding the physics of nonequilibrium systems driven in steady states by external forces and reservoirs. The algorithm uses methods from risk-sensitive and feedback control to estimate from a single trajectory a new process, called the driven process, known to be efficient for importance sampling. Its advantages compared to other simulation techniques, such as splitting or cloning, are discussed and illustrated with simple equilibrium and nonequilibrium diffusion models
    corecore