22 research outputs found

    Spectrophotometric assessment of nuclear proteins: a preliminary study

    Get PDF
    Qualitative evaluation of protein content in formalin fixed, paraffin-embedded tissues is usually performed by means of cytofluorimetric analysis. On the other hand, several studies underline the opportunity to measure the concentration of nuclear proteins, which is often accomplished by using complex techniques and instrumentation. In the present work, we suggest a new application for the spectrophotometric evaluation of protein content on extracted and isolated nuclei, based on EDTA treatment of specimens and chemical extraction of proteins, followed by direct spectrophotometric measurement at UV wavelengths. We also demonstrate how this parameter correlates with other diagnostic factors, such as the proliferation index (MIB-1) and the DNA content (ploidy) of cells. This method is simple and effective, yet less expensive than other protein quantitation protocols

    High-level detection of gene amplification and chromosome aneuploidy in extracted nuclei from paraffin-embedded tissue of human cancer using FISH: a new approach for retrospective studies

    Get PDF
    A novel application of fluorescence in situ hybridization (FISH) to isolated nuclei is described. The method detects gene amplification and chromosome aneuploidy in extracted nuclei from paraffin-embedded tissue of human cancer with greater sensitivity and specificity than existing FISH methods. In this study, the method is applied to signal detection of the HER-2/neu (c-erbB-2) gene, whose amplification is one of the most common genetic alterations associated with human breast cancer. Nuclei were extracted and isolated from formalin fixed, paraffin embedded tissue of 43 different carcinomas (breast, ovary, endometrium, gastrointestinal stromal tumor and malignant mesothelioma). FISH was performed both on sections and extracted nuclei of each tissue using chromosome enumeration probes (CEP) for the centromeric regions of chromosomes 8 and 17, and a locus specific identifier (LSI) for the HER-2/neu oncogene. Differences between ploidy calculated in sections and extracted nuclei were seen in 3 breast carcinomas and 1 gastrointestinal stromal tumor (GIST). Furthermore, 1 breast cancer, previously considered to be borderline for HER-2/neu gene amplification turned out to be clearly amplified. Nuclei extraction and isolation bypass all the problems related to signal interpretation in tissue sections, and the adoption of this new technique, which improves the signal quality in several neoplastic samples, is suggested

    Analysis of single nucleotide polymorphism in the promoter and protein expression of the chemokine Eotaxin-1 in colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies suggest that chemokines (chemotactic cytokines) promote and regulate neoplastic progression including metastasis and angiogenesis. The chemokine eotaxin-1 is a powerful eosinophil attractant but also exerts chemotaxis of other leukocytes. Eotaxin-1 has been implicated in gastrointestinal disorders and may play an important role in colorectal mucosal immunity.</p> <p>Patients and methods</p> <p>The objective of this study was to assess the role of eotaxin-1 in colorectal cancer (CRC). Levels of eotaxin-1 protein in CRC tissues (n = 86) and paired normal mucosa were compared after determination by ELISA. Plasma eotaxin-1 levels from CRC patients (n = 67) were also compared with controls (n = 103) using the same method. Moreover, a TaqMan system was used to evaluate the -384A>G eotaxin-1 gene variant in CRC patients (n = 241) and in a control group (n = 253).</p> <p>Results</p> <p>Eotaxin-1 protein levels in colorectal tumours were significantly (P < 0.0001) higher than in normal tissue. Immunohistochemistry revealed eotaxin-1 expression in stromal cells such as fibroblasts and leukocytes of the CRC tissue. The plasma eotaxin-1 level in CRC patients was lower compared with controls (P < 0.0001). Patients with tumours classified as Dukes' stage B and C had lower levels than patients with tumours in Dukes' stage A. We found no difference in genotype distribution but noted a difference regarding allele distribution (P = 0.036) and a dominance of allele G in rectal cancer patients.</p> <p>Conclusion</p> <p>The up-regulated eotaxin-1 protein expression in cancer tissue may reflect an eotaxin-1 mediated angiogenesis and/or a recruitment of leukocytes with potential antitumourigenic role. We noticed a dominance of the G allele in rectal cancer patients compared with colon cancer patients that was independent of eotaxin-1 expression.</p

    High-level detection of gene amplification and chromosome aneuploidy in extracted nuclei from paraffin-embedded tissue of human cancer using FISH: a new approach for retrospective studies

    No full text
    A novel application of fluorescence in situ hybridization (FISH) to isolated nuclei is described. The method detects gene amplification and chromosome aneuploidy in extracted nuclei from paraffin-embedded tissue of human cancer with greater sensitivity and specificity than existing FISH methods. In this study, the method is applied to signal detection of the HER-2/neu (c-erbB-2) gene, whose amplification is one of the most common genetic alterations associated with human breast cancer. Nuclei were extracted and isolated from formalin fixed, paraffin embedded tissue of 43 different carcinomas (breast, ovary, endometrium, gastrointestinal stromal tumor and malignant mesothelioma). FISH was performed both on sections and extracted nuclei of each tissue using chromosome enumeration probes (CEP) for the centromeric regions of chromosomes 8 and 17, and a locus specific identifier (LSI) for the HER-2/neu oncogene. Differences between ploidy calculated in sections and extracted nuclei were seen in 3 breast carcinomas and 1 gastrointestinal stromal tumor (GIST). Furthermore, 1 breast cancer, previously considered to be borderline for HER-2/neu gene amplification turned out to be clearly amplified. Nuclei extraction and isolation bypass all the problems related to signal interpretation in tissue sections, and the adoption of this new technique, which improves the signal quality in several neoplastic samples, is suggested
    corecore