16 research outputs found

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF
    High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm2 unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion

    Fourth cranial nerve palsy and brown syndrome: two interrelated congenital cranial dysinnervation disorders?

    Get PDF
    Based on neuroimaging data showing absence of the trochlear nerve, congenital superior oblique palsy is now classified as a congenital cranial dysinnervation disorder. A similar absence of the abducens nerve is accompanied by misinnervation to the lateral rectus muscle from a branch of oculomotor nerve in the Duane retraction syndrome. This similarity raises the question of whether some cases of Brown syndrome could arise from a similar synkinesis between the inferior and superior oblique muscles in the setting of congenital superior oblique palsy. This hypothesis has gained support from the confluence of evidence from a number of independent studies. Using Duane syndrome as a model, we critically review the accumulating evidence that some cases of Brown syndrome are ultimately attributable to dysgenesis of the trochlear nerve

    Spatial and temporal scales of dopamine transmission

    No full text
    corecore