754 research outputs found

    CaII absorption in the circumstellar disk of Beta Pictoris and other A-type stars

    Get PDF
    Presented here are the results of observations made at the Mount John Observatory (MJUO) during the spectroscopic campaigns to observe beta Pictoris in 1992, 1993, 1994 and observations conducted in 1995 to characterise the behaviour of the Ca II H and K lines and to test the Falling Evaporating Bodies scenario. Using the method of division by a reference spectrum both narrow and broad variable absorption features in both the redshifted and blue shifted sides of the Ca II H and K lines are clearly detected. The large data set obtained allows the determination of the evolution in terms of velocity, equivalent width, FWHM and timescales of variability of the variable absorption features. These are then compared with the results on Lagrange-Henri et al. (1996) in their paper on the 1992 observing campaign. Lagrange-Henri et al. find that there are 2 velocity regimes and this is confirmed in the MJUO data. The higher the redshift, the smaller the variability timescales and the smaller the absorbing cloud. In contrast the low velocity features tend to be longer lived and to have the deeper absorptions. The correlation between the FWHM and velocity of the features found by Lagrange-Henri et al. is confirmed, but with the larger set of data the correlation is found to be somewhat weaker. Significant activity was seen in each set of observations with long lived absorption features at low velocity almost always being present and it has been found that ¼ of all features observed are most likely due to more than one FEB. The effect of stellar rotation is suggested in the data of some of the strong and more variable absorption features. However conclusive evidence of the changes in equivalent width are not forthcoming. Large numbers of high velocity features are also observed and are seen to vary in timescales no longer than the crossing time for an orbiting body to pass across the stellar disk. This lends further support to the FEB scenario as an explanation for the variable absorption features. The measurement of the filling factors of the clouds of ions indicate that these clouds do in indeed cover large fractions of the stellar disk and some of the lines even exhibit pK/pH less than 1, as predicted. The FEB scenario appears to explain many of the characteristics of the variable absorption features very well, simulations can reproduce many of the absorptions however there are some cases where the FEB scenario fails to adequately explain the observations. The ability for some of the long-lived features to last as long as they are observed would require either large numbers of bodies on similar orbits crossing the line of sight for many weeks, or that there is some other explanation for the origin of the absorptions

    Perturbations on steady spherical accretion in Schwarzschild geometry

    Full text link
    The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur

    Implications of nonlinearity for spherically symmetric accretion

    Full text link
    We subject the steady solutions of a spherically symmetric accretion flow to a time-dependent radial perturbation. The equation of the perturbation includes nonlinearity up to any arbitrary order, and bears a form that is very similar to the metric equation of an analogue acoustic black hole. Casting the perturbation as a standing wave on subsonic solutions, and maintaining nonlinearity in it up to the second order, we get the time-dependence of the perturbation in the form of a Li\'enard system. A dynamical systems analysis of the Li\'enard system reveals a saddle point in real time, with the implication that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. The instability of initial subsonic states also adversely affects the temporal evolution of the flow towards a final and stable transonic state.Comment: 14 pages, ReVTeX. Substantially revised with respect to the previous version. Three figures and a new section (Sec. VI) adde

    Evolution of transonicity in an accretion disc

    Get PDF
    For inviscid, rotational accretion flows driven by a general pseudo-Newtonian potential on to a Schwarzschild black hole, the only possible fixed points are saddle points and centre-type points. For the specific choice of the Newtonian potential, the flow has only two critical points, of which the outer one is a saddle point while the inner one is a centre-type point. A restrictive upper bound is imposed on the admissible range of values of the angular momentum of sub-Keplerian flows through a saddle point. These flows are very unstable to any deviation from a necessarily precise boundary condition. The difficulties against the physical realisability of a solution passing through the saddle point have been addressed through a temporal evolution of the flow, which gives a non-perturbative mechanism for selecting a transonic solution passing through the saddle point. An equation of motion for a real-time perturbation about the stationary flows reveals a very close correspondence with the metric of an acoustic black hole, which is also an indication of the primacy of transonicity.Comment: 18 page

    New homogeneous iron abundances of double-mode Cepheids from high-resolution echelle spectroscopy

    Full text link
    Aims: We define the relationship between the double-mode pulsation of Cepheids and metallicity in a more accurate way, determine the empirical metallicities of double-mode Cepheids from homogeneous, high-resolution spectroscopic data, and study of the period-ratio -- metallicity dependence. Methods: The high S/N echelle spectra obtained with the FEROS spectrograph were analyzed using a self-developed IRAF script, and the iron abundances were determined by comparing with synthetic spectra assuming LTE. Results: Accurate [Fe/H] values of 17 galactic beat Cepheids were determined. All these stars have solar or slightly subsolar metallicity. Their period ratio P1/P0 shows strong correlation with their derived [Fe/H] values. The corresponding period ratio -- metallicity relation has been evaluated.Comment: 10 pages, 7 figures, accepted in A&

    Bi-directional association between depression and HF: An electronic health records-based cohort study.

    Get PDF
    To determine whether a bi-directional relationship exists between depression and HF within a single population of individuals receiving primary care services, using longitudinal electronic health records (EHRs). This retrospective cohort study utilized EHRs for adults who received primary care services within a large healthcare system in 2006. Validated EHR-based algorithms identified 10,649 people with depression (depression cohort) and 5,911 people with HF (HF cohort) between January 1, 2006 and December 31, 2018. Each person with depression or HF was matched 1:1 with an unaffected referent on age, sex, and outpatient service use. Each cohort (with their matched referents) was followed up electronically to identify newly diagnosed HF (in the depression cohort) and depression (in the HF cohort) that occurred after the index diagnosis of depression or HF, respectively. The risks of these outcomes were compared (vs. referents) using marginal Cox proportional hazard models adjusted for 16 comorbid chronic conditions. 2,024 occurrences of newly diagnosed HF were observed in the depression cohort and 944 occurrences of newly diagnosed depression were observed in the HF cohort over approximately 4-6 years of follow-up. People with depression had significantly increased risk for developing newly diagnosed HF (HR 2.08, 95% CI 1.89-2.28) and people with HF had a significantly increased risk of newly diagnosed depression (HR 1.34, 95% CI 1.17-1.54) after adjusting for all 16 comorbid chronic conditions. These results provide evidence of a bi-directional relationship between depression and HF independently of age, sex, and multimorbidity from chronic illnesses

    Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge

    Full text link
    The exact solution for the electromagnetic field occuring when the Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr-Taub-NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is revised, 3 references are adde

    Improving the Prospects for Detecting Extrasolar Planets in Gravitational Microlensing in 2002

    Full text link
    Gravitational microlensing events of high magnification have been shown to be promising targets for detecting extrasolar planets. However, only a few events of high magnification have been found using conventional survey techniques. Here we demonstrate that high magnification events can be readily found in microlensing surveys using a strategy that combines high frequency sampling of target fields with online difference imaging analysis. We present 10 microlensing events with peak magnifications greater than 40 that were detected in real-time towards the Galactic Bulge during 2001 by MOA. We show that Earth mass planets can be detected in future events such as these through intensive follow-up observations around the event peaks. We report this result with urgency as a similar number of such events are expected in 2002.Comment: 11 pages, 3 embedded ps figures including 2 colour, revised version accepted by MNRA

    Microlensing optical depth towards the Galactic bulge from MOA observations during 2000 with Difference Image Analysis

    Get PDF
    We analyze the data of the gravitational microlensing survey carried out by by the MOA group during 2000 towards the Galactic Bulge (GB). Our observations are designed to detect efficiently high magnification events with faint source stars and short timescale events, by increasing the the sampling rate up to 6 times per night and using Difference Image Analysis (DIA). We detect 28 microlensing candidates in 12 GB fields corresponding to 16 deg^2. We use Monte Carlo simulations to estimate our microlensing event detection efficiency, where we construct the I-band extinction map of our GB fields in order to find dereddened magnitudes. We find a systematic bias and large uncertainty in the measured value of the timescale tEoutt_{\rm Eout} in our simulations. They are associated with blending and unresolved sources, and are allowed for in our measurements. We compute an optical depth tau = 2.59_{-0.64}^{+0.84} \times 10^{-6} towards the GB for events with timescales 0.3<t_E<200 days. We consider disk-disk lensing, and obtain an optical depth tau_{bulge} = 3.36_{-0.81}^{+1.11} \times 10^{-6}[0.77/(1-f_{disk})] for the bulge component assuming a 23% stellar contribution from disk stars. These observed optical depths are consistent with previous measurements by the MACHO and OGLE groups, and still higher than those predicted by existing Galactic models. We present the timescale distribution of the observed events, and find there are no significant short events of a few days, in spite of our high detection efficiency for short timescale events down to t_E = 0.3 days. We find that half of all our detected events have high magnification (>10). These events are useful for studies of extra-solar planets.Comment: 65 pages and 30 figures, accepted for publication in ApJ. A systematic bias and uncertainty in the optical depth measurement has been quantified by simulation
    corecore