131 research outputs found

    Radiogenomics in clear cell renal cell carcinoma: correlations between advanced CT imaging (texture analysis) and microRNAs expression

    Get PDF
    Purpose: A relevant challenge for the improvement of clear cell renal cell carcinoma management could derive from the identification of novel molecular biomarkers that could greatly improve the diagnosis, prognosis, and treatment choice of these neoplasms. In this study, we investigate whether quantitative parameters obtained from computed tomography texture analysis may correlate with the expression of selected oncogenic microRNAs. Methods: In a retrospective single-center study, multiphasic computed tomography examination (with arterial, portal, and urographic phases) was performed on 20 patients with clear cell renal cell carcinoma and computed tomography texture analysis parameters such as entropy, kurtosis, skewness, mean, and standard deviation of pixel distribution were measured using multiple filter settings. These quantitative data were correlated with the expression of selected microRNAs (miR-21-5p, miR-210-3p, miR-185-5p, miR-221-3p, miR-145-5p). Both the evaluations (microRNAs and computed tomography texture analysis) were performed on matched tumor and normal corticomedullar tissues of the same patients cohort. Results: In this pilot study, we evidenced that computed tomography texture analysis has robust parameters (eg, entropy, mean, standard deviation) to distinguish normal from pathological tissues. Moreover, a higher coefficient of determination between entropy and miR-21-5p expression was evidenced in tumor versus normal tissue. Interestingly, entropy and miR-21-5p show promising correlation in clear cell renal cell carcinoma opening to a radiogenomic strategy to improve clear cell renal cell carcinoma management. Conclusion: In this pilot study, a promising correlation between microRNAs and computed tomography texture analysis has been found in clear cell renal cell carcinoma. A clear cell renal cell carcinoma can benefit from noninvasive evaluation of texture parameters in adjunction to biopsy results. In particular, a promising correlation between entropy and miR-21-5p was found

    Coordinating Solvent-Assisted Synthesis of Phase-Stable Perovskite Nanocrystals with High Yield Production for Optoelectronic Applications

    Get PDF
    Inorganic perovskite nanocrystals (NCs) have shown good potential as an emerging semiconducting building block owing to their excellent optoelectronic properties. However, despite extensive studies on their structure-dependent optical properties, they still suffer severely from chemical and phase instabilities in ambient conditions. Here, we report a facile method for the synthesis of mixed halide inorganic perovskite NCs based on recrystallization in an antisolvent mixture in an ambient atmosphere, at room temperature. We introduced an alcohol-derivative solvent, as a secondary antisolvent in the solvent mixture, which crystallizes at room temperature. This mediates and facilitates the perovskite crystallization, leading to a high chemical yield and stability. We demonstrate that this secondary antisolvent establishes intermolecular interactions with lead halide salt, which successfully stabilizes the γ-dark phase of perovskite by encapsulating NCs in a solution and thin film. This allows us to produce concentrated NC solutions with a photoluminescence quantum yield of 70%. Finally, we fabricate CsPbI2Br NCs (optical bandgap 1.88 eV) solar cells, which showed a stabilized photovoltaic performance in ambient conditions, without encapsulation, showing a Voc of 1.32 V

    Structural effects on the luminescence properties of CsPbI3 nanocrystals

    Get PDF
    Metal halide perovskite nanocrystals (NCs) are promising for photovoltaic and light-emitting applications. Due to the softness of their crystal lattice, structural modifications have a critical impact on their optoelectronic properties. Here we investigate the size-dependent optoelectronic properties of CsPbI3 NCs ranging from 7 to 17 nm, employing temperature and pressure as thermodynamic variables to modulate the energetics of the system and selectively tune the interatomic distances. By temperature-dependent photoluminescence spectroscopy, we have found that luminescence quenching channels exhibit increased non-radiative losses and weaker exciton-phonon coupling in bigger particles, in turn affecting the luminescence efficiency. Through pressure-dependent measurements up to 2.5 GPa, supported by XRD characterization, we revealed a NC-size dependent solid-solid phase transition from the γ-phase to the δ-phase. Importantly, the optical response to these structural changes strongly depends on the size of the NC. Our findings provide an interesting guideline to correlate the size and structural and optoelectronic properties of CsPbI3 NCs, important for engineering the functionalities of this class of soft semiconductors

    A synthetic cytokinin primes photosynthetic and growth response in grapevine under ion-independent salinity stress

    Get PDF
    Aiding optimal plant–environment interaction would favor plant resilience against environmental constrains including salt stress. We test the hypothesis that 6-Benzylaminopurine (BAP) primes grapevine’s salt tolerance in vines (Vitis vinifera) received salt water (NaCl 100 mM) through the modulation of gene expression of BAP (AHK4, AHP1) and salt-stress (CAT, APX) inducible genes and morpho-physiological traits. A subgroup of vines had previously (48 h) been primed with BAP (80 mg/L) before salt stress. The gene expressions were 30% (CAT) and 56% (APX) lower in primed salt-stressed vines than that in un-primed. Salt treatment did not increase leaf Na+ but it lowered stomatal conductance (g s), photosynthesis (A), stem water potential (less negative) and photosystem-II efficiency (F v/F m). Chlorophyll-a concentrations were 30% higher in BAP-primed compared to un-primed. Adverse effects of salt were significantly reduced, maintaining high A/g s, F v/F m and growth. After the relief of the stress, the BAP primed vines had a fast recovery

    Ultrafast charge carrier dynamics in quantum confined 2D perovskite

    Get PDF
    We studied the charge carrier dynamics in 2D perovskite NBT2PbI4 by ultrafast optical pump-THz probe spectroscopy. We observed a few ps long relaxation dynamics that can be ascribed to the band to band carrier recombination, in the absence of any contribution from many-body and trap assisted processes. The transient conductivity spectra show that the polaron dynamics is strongly modulated by the presence of a rich exciton population. The polarization field resulting from the exciton formation acts as the source of a restoring force that localizes polarons. This is revealed by the presence of a negative imaginary conductivity. Our results show that the dynamics of excitons in 2D perovskites at room temperature can be detected by monitoring their effect on the conductivity of the photoinduced polaronic carrier

    Lasing in Two-Dimensional Tin Perovskites

    Get PDF
    Two-dimensional (2D) perovskites have been proposed as materials capable of improving the stability and surpassing the radiative recombination efficiency of three-dimensional perovskites. However, their luminescent properties have often fallen short of what has been expected. In fact, despite attracting considerable attention for photonic applications during the last two decades, lasing in 2D perovskites remains unclear and under debate. Here, we were able to improve the optical gain properties of 2D perovskite and achieve optically pumped lasing. We show that the choice of the spacer cation affects the defectivity and photostability of the perovskite, which in turn influences its optical gain. Based on our synthetic strategy, we obtain PEA2SnI4 films with high crystallinity and favorable optical properties, resulting in amplified spontaneous emission (ASE) with a low threshold (30 μJ/cm2), a high optical gain above 4000 cm-1 at 77 K, and ASE operation up to room temperature

    Black and pink. Single lesion or double diagnosis?

    Get PDF
    Fibroepithelioma of Pinkus (FeP) is an uncommon skin lesion considered to be a rare variant of basal cell carcinoma (BCC), even though some researchers have argued for its classifica- tion as a trichoblastoma. FeP appears frequently as a solitary, flesh-colored, well-demarcated plaque, typically localized on the lumbosacral area of patients aged 40 to 60 years. It often develops in patients with a history of BCC, most commonly in wome

    Photoluminescence Intensity Enhancement in Tin Halide Perovskites

    Get PDF
    The prevalence of background hole doping in tin halide perovskites usually dominates their recombination dynamics. The addition of excess Sn halide source to the precursor solution is the most frequently used approach to reduce the hole doping and reveals photo-carrier dynamics related to defects activity. This study presents an experimental and theoretical investigation on defects under light irradiation in tin halide perovskites by combining measurements of photoluminescence with first principles computational modeling. It finds that tin perovskite thin films prepared with an excess of Sn halide sources exhibit an enhancement of the photoluminescence intensity over time under continuous excitation in inert atmosphere. The authors propose a model in which light irradiation promotes the annihilation of VSn2−/Sni2+ Frenkel pairs, reducing the deep carrier trapping centers associated with such defect and increasing the radiative recombination. Importantly, these observations can be traced in the open-circuit voltage dynamics of tin-based halide perovskite solar cells, implying the relevance of controlling the Sn photochemistry to stabilize tin perovskite devices

    Nature of Charge Carriers in a High Electron Mobility Naphthalenediimide Based Semiconducting Copolymer

    No full text
    The nature of charge carriers in recently developed high mobility semiconducting donor-acceptor polymers is debated. Here, localization due to charge relaxation is investigated in a prototypal system, a good electron transporting naphthalenediimide based copolymer, by means of current-voltage I-V electrical characteristics and charge modulation spectroscopy (CMS) in top-gate field-effect transistors (FETs), combined with density functional theory (DFT) and time dependent DFT (TDDFT) calculations. In particular, pristine copolymer films are compared with films that underwent a melt-annealing process, the latter leading to a drastic change of the microstructure. Despite the packing modification, which involves also the channel region, both the electron mobility and the energy of polaronic transitions are substantially unchanged upon melt-annealing. The polaron absorption features can be rationalized and reproduced by TDDFT calculations for isolated charged oligomers. Therefore, it is concluded that in such a high electron mobility copolymer the charge transport process involves polaronic species which are intramolecular in nature and, from a more general point of view, that interchain delocalization of the polaron is not necessary to sustain charge mobilities in the 0.1 to 1 cm2 V–1 s–1 range. These findings contribute to the rationalization of the charge transport process in the recently developed class of donor-acceptor π-conjugated copolymers featuring high charge mobilities and complex morphologies

    Effect of electronic doping and traps on carrier dynamics in tin halide perovskites

    Get PDF
    Tin halide perovskites have recently emerged as promising materials for low band gap solar cells. Much effort has been invested on controlling the limiting factors responsible for poor device efficiencies, namely self-p-doping and tin oxidation. Both phenomena are related to the presence of defects; however, full understanding of their implications in the optoelectronic properties of the material is still missing. We provide a comprehensive picture of the competing radiative and non-radiative recombination processes in tin-based perovskite thin films to establish the interplay between doping and trapping by combining photoluminescence measurements with trapped-carrier dynamic simulations and first-principles calculations. We show that pristine Sn perovskites, i.e. sample processed with commercially available SnI2 used as received, exhibit extremely high radiative efficiency due to electronic doping which boosts the radiative band-to-band recombination. Contrarily, thin films where Sn4+ species are intentionally introduced show drastically reduced radiative lifetime and efficiency due to a dominance of Auger recombination at all excitation densities when the material is highly doped. The introduction of SnF2 reduces the doping and passivates Sn4+ trap states but conversely introduces additional non-radiative decay channels in the bulk that fundamentally limit the radiative efficiency. Overall, we provide a qualitative model that takes into account different types of traps present in tin-perovskite thin films and show how doping and defects can affect the optoelectronic properties
    • …
    corecore