192 research outputs found

    The role of decision confidence in advice-taking and trust formation

    Full text link
    In a world where ideas flow freely between people across multiple platforms, we often find ourselves relying on others' information without an objective standard to judge whether those opinions are accurate. The present study tests an agreement-in-confidence hypothesis of advice perception, which holds that internal metacognitive evaluations of decision confidence play an important functional role in the perception and use of social information, such as peers' advice. We propose that confidence can be used, computationally, to estimate advisors' trustworthiness and advice reliability. Specifically, these processes are hypothesized to be particularly important in situations where objective feedback is absent or difficult to acquire. Here, we use a judge-advisor system paradigm to precisely manipulate the profiles of virtual advisors whose opinions are provided to participants performing a perceptual decision making task. We find that when advisors' and participants' judgments are independent, people are able to discriminate subtle advice features, like confidence calibration, whether or not objective feedback is available. However, when observers' judgments (and judgment errors) are correlated - as is the case in many social contexts - predictable distortions can be observed between feedback and feedback-free scenarios. A simple model of advice reliability estimation, endowed with metacognitive insight, is able to explain key patterns of results observed in the human data. We use agent-based modeling to explore implications of these individual-level decision strategies for network-level patterns of trust and belief formation

    Real-time internet control of situated human agents

    No full text

    PSY-210 (003): Introduction to Psychology

    Get PDF

    STS 321-001: Social Psychology

    Get PDF

    Ascent trajectory optimisation for a single-stage-to-orbit vehicle with hybrid propulsion

    Get PDF
    This paper addresses the design of ascent trajectories for a hybrid-engine, high performance, unmanned, single-stage-to-orbit vehicle for payload deployment into low Earth orbit. A hybrid optimisation technique that couples a population-based, stochastic algorithm with a deterministic, gradient-based technique is used to maximize the nal vehicle mass in low Earth orbit after accounting for operational constraints on the dynamic pressure, Mach number and maximum axial and normal accelerations. The control search space is first explored by the population-based algorithm, which uses a single shooting method to evaluate the performance of candidate solutions. The resultant optimal control law and corresponding trajectory are then further refined by a direct collocation method based on finite elements in time. Two distinct operational phases, one using an air-breathing propulsion mode and the second using rocket propulsion, are considered. The presence of uncertainties in the atmospheric and vehicle aerodynamic models are considered in order to quantify their effect on the performance of the vehicle. Firstly, the deterministic optimal control law is re-integrated after introducing uncertainties into the models. The proximity of the final solutions to the target states are analysed statistically. A second analysis is then performed, aimed at determining the best performance of the vehicle when these uncertainties are included directly in the optimisation. The statistical analysis of the results obtained are summarized by an expectancy curve which represents the probable vehicle performance as a function of the uncertain system parameters. This analysis can be used during the preliminary phase of design to yield valuable insights into the robustness of the performance of the vehicle to uncertainties in the specification of its parameters

    Modularity and composite diversity affect the collective gathering of information online

    Get PDF
    Many modern interactions happen in a digital space, where automated recommendations and homophily can shape the composition of groups interacting together and the knowledge that groups are able to tap into when operating online. Digital interactions are also characterized by different scales, from small interest groups to large online communities. Here, we manipulate the composition of groups based on a large multi-trait profiling space (including demographic, professional, psychological and relational variables) to explore the causal link between group composition and performance as a function of group size. We asked volunteers to search news online under time pressure and measured individual and group performance in forecasting real geo-political events. Our manipulation affected the correlation of forecasts made by people after online searches. Group composition interacted with group size so that composite diversity benefited individual and group performance proportionally to group size. Aggregating opinions of modular crowds composed of small independent groups achieved better forecasts than aggregating a similar number of forecasts from non-modular ones. Finally, we show differences existing among groups in terms of disagreement, speed of convergence to consensus forecasts and within-group variability in performance. The present work sheds light on the mechanisms underlying effective online information gathering in digital environments

    Confidence, advice seeking and changes of mind in decision making

    Get PDF

    Bots influence opinion dynamics without direct human-bot interaction: The mediating role of recommender systems

    Get PDF
    Bots' ability to influence public discourse is difficult to estimate. Recent studies found that hyperpartisan bots are unlikely to influence public opinion because bots often interact with already highly polarized users. However, previous studies focused on direct human-bot interactions (e.g., retweets, at-mentions, and likes). The present study suggests that political bots, zealots, and trolls may indirectly affect people's views via a platform's content recommendation system's mediating role, thus influencing opinions without direct human-bot interaction. Using an agent-based opinion dynamics simulation, we isolated the effect of a single bot-representing 1% of nodes in a network-on the opinion of rational Bayesian agents when a simple recommendation system mediates the agents' content consumption. We compare this experimental condition with an identical baseline condition where such a bot is absent. Across conditions, we use the same random seed and a psychologically realistic Bayesian opinion update rule so that conditions remain identical except for the bot presence. Results show that, even with limited direct interactions, the mere presence of the bot is sufficient to shift the average population's opinion. Virtually all nodes -not only nodes directly interacting with the bot- shifted towards more extreme opinions. Furthermore, the mere bot's presence significantly affected the internal representation of the recommender system. Overall, these findings offer a proof of concept that bots and hyperpartisan accounts can influence population opinions not only by directly interacting with humans but also by secondary effects, such as shifting platforms recommendation engines internal representations. The mediating role of recommender systems creates indirect causal pathways of algorithmic opinion manipulation.The study was funded by the Max Planck Institute for Human Development. D.B. was partly funded by a research grant from the Institute of Psychology at the Chinese Academy of Sciences
    corecore