58,873 research outputs found

    Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb^(−1) of pp collisions at √s = 7 TeV using the ATLAS detector

    Get PDF
    The ATLAS detector at the LHC is used to search for high-mass states, such as heavy charged gauge bosons (W'), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 1.04 fb^(−1). No excess above Standard Model expectations is observed. A W' with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 2.15 Te

    Depinning and dynamics of AC driven vortex lattices in random media

    Get PDF
    We study the different dynamical regimes of a vortex lattice driven by AC forces in the presence of random pinning via numerical simulations. The behaviour of the different observables is charaterized as a function of the applied force amplitude for different frequencies. We discuss the inconveniences of using the mean velocity to identify the depinnig transition and we show that instead, the mean quadratic displacement of the lattice is the relevant magnitude to characterize different AC regimes. We discuss how the results depend on the initial configuration and we identify new hysteretic effects which are absent in the DC driven systems.Comment: 6 pages, 4 figure

    Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors

    Get PDF
    Validation of a technological process requires an intensive characterization of the performance of the resulting devices, circuits, or systems. The technology for the fabrication of micro and nanoelectromechanical systems (MEMS and NEMS) is evolving rapidly, with new kind of device concepts for applications like sensing or harvesting are being proposed and demonstrated. However, the characterization tools and methods for these new devices are still not fully developed. Here, we present an on-wafer, highly precise, and rapid characterization method to measure the mechanical, electrical, and electromechanical properties of piezoresistive cantilevers. The setup is based on a combination of probe-card and atomic force microscopy technology, it allows accessing many devices across a wafer and it can be applied to a broad range of MEMS and NEMS. Using this setup we have characterized the performance of multiple submicron thick piezoresistive cantilever force sensors. For the best design we have obtained a force sensitivity ℜ_F = 158ÎŒV/nN, a noise of 5.8 ÎŒV (1 Hz–1 kHz) and a minimum detectable force of 37 pN with a relative standard deviation of σ_r ≈ 8%. This small value of σr, together with a high fabrication yield >95%, validates our fabrication technology. These devices are intended to be used as bio-molecular detectors for the measurement of intermolecular forces between ligand and receptor molecule pairs
    • 

    corecore