3,943 research outputs found

    Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    Get PDF
    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a significant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.Comment: 4 pages, 2 Figures; accepted for publication on Acta Polytechnica (Proceedings of the Frascati Workshop 2013

    Coronal loop hydrodynamics. The solar flare observedon November 12 1980 revisited: the UV line emission

    Get PDF
    We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the \FeXXI 1354.1 \AA line observed with the UVSP) fails to model the flux level and evolution of the \OV 1371.3 \AA line.Comment: A&A, in press, 6 pages, 5 figure

    Hydrodynamic modelling of ejecta shrapnel in the Vela supernova remnant

    Get PDF
    Many supernova remnants (SNRs) are characterized by a knotty ejecta structure. The Vela SNR is an excellent example of remnant in which detached clumps of ejecta are visible as X-ray emitting bullets that have been observed and studied in great detail. We aim at modelling the evolution of ejecta shrapnel in the Vela SNR, investigating the role of their initial parameters (position and density) and addressing the effects of thermal conduction and radiative losses. We performed a set of 2-D hydrodynamic simulations describing the evolution of a density inhomogeneity in the ejecta profile. We explored different initial setups. We found that the final position of the shrapnel is very sensitive to its initial position within the ejecta, while the dependence on the initial density contrast is weaker. Our model also shows that moderately overdense knots can reproduce the detached features observed in the Vela SNR. Efficient thermal conduction produces detectable effects by determining an efficient mixing of the ejecta knot with the surrounding medium and shaping a characteristic elongated morphology in the clump.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Influence of detector motion in entanglement measurements with photons

    Full text link
    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step towards the implementation of quantum information protocols in a global scale

    Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

    Get PDF
    High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods, by measuring the position of a selected sample of emission lines, and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. We found that the plasma at T~2-4 MK has a line-of-sight velocity of 38.3+/-5.1 km/s with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3+/-5.1 km/s, with the inferred intrinsic velocity of the post shock of TW Hya, v_post~110-120 km/s, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Our results indicate that complex magnetic field geometries, such as that of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the CIV resonance doublet at 1550 Ang, as found by Ardila et al. (2013), then the plasma at 2-4 MK and that at 0.1 MK likely originate in the same post-shock regions.Comment: Accepted for publication in Astronomy & Astrophysics; 2nd version after language editor corrections; 16 pages, 8 figures, 6 table

    Comment on "Quantitative wave-particle duality in multibeam interferometers"

    Full text link
    In a recent paper [Phys. Rev. {\bf A64}, 042113 (2001)] S. D\"urr proposed an interesting multibeam generalization of the quantitative formulation of interferometric wave-particle duality, discovered by Englert for two-beam interferometers. The proposed generalization is an inequality that relates a generalized measure of the fringe visibility, to certain measures of the maximum amount of which-way knowledge that can be stored in a which-way detector. We construct an explicit example where, with three beams in a pure state, the scheme proposed by D\"{u}rr leads to the possibility of an ideal which-way detector, that can achieve a better path-discrimination, at the same time as a better fringe visibility. In our opinion, this seems to be in contrast with the intuitive idea of complementarity, as it is implemented in the two-beams case, where an increase in path discrimination always implies a decrease of fringe visibility, if the beams and the detector are in pure states.Comment: 4 pages, 1 encapsulated figure. In press on Phys. Rev.

    Quantum Field Theory with Null-Fronted Metrics

    Full text link
    There is a large class of classical null-fronted metrics in which a free scalar field has an infinite number of conservation laws. In particular, if the scalar field is quantized, the number of particles is conserved. However, with more general null-fronted metrics, field quantization cannot be interpreted in terms of particle creation and annihilation operators, and the physical meaning of the theory becomes obscure.Comment: 11 page

    Criteria for generalized macroscopic and mesoscopic quantum coherence

    Get PDF
    We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of eigenstates of an observable, and develop some signatures for their existence. We define the extent, or size SS of a superposition, with respect to an observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that superposition. Such superpositions are referred to as generalized SS-scopic superpositions to distinguish them from the extreme superpositions that superpose only the two states that have a difference SS in their prediction for the observable. We also consider generalized SS-scopic superpositions of coherent states. We explore the constraints that are placed on the statistics if we suppose a system to be described by mixtures of superpositions that are restricted in size. In this way we arrive at experimental criteria that are sufficient to deduce the existence of a generalized SS-scopic superposition. The signatures developed are useful where one is able to demonstrate a degree of squeezing. We also discuss how the signatures enable a new type of Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.
    corecore