3,690 research outputs found

    Optimal distinction between non-orthogonal quantum states

    Get PDF
    Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag

    Extendable self-avoiding walks

    Get PDF
    The connective constant mu of a graph is the exponential growth rate of the number of n-step self-avoiding walks starting at a given vertex. A self-avoiding walk is said to be forward (respectively, backward) extendable if it may be extended forwards (respectively, backwards) to a singly infinite self-avoiding walk. It is called doubly extendable if it may be extended in both directions simultaneously to a doubly infinite self-avoiding walk. We prove that the connective constants for forward, backward, and doubly extendable self-avoiding walks, denoted respectively by mu^F, mu^B, mu^FB, exist and satisfy mu = mu^F = mu^B = mu^FB for every infinite, locally finite, strongly connected, quasi-transitive directed graph. The proofs rely on a 1967 result of Furstenberg on dimension, and involve two different arguments depending on whether or not the graph is unimodular.Comment: Accepted versio

    Convex probability domain of generalized quantum measurements

    Full text link
    Generalized quantum measurements with N distinct outcomes are used for determining the density matrix, of order d, of an ensemble of quantum systems. The resulting probabilities are represented by a point in an N-dimensional space. It is shown that this point lies in a convex domain having at most d^2-1 dimensions.Comment: 7 pages LaTeX, one PostScript figure on separate pag

    Wigner's little group and Berry's phase for massless particles

    Full text link
    The ``little group'' for massless particles (namely, the Lorentz transformations Λ\Lambda that leave a null vector invariant) is isomorphic to the Euclidean group E2: translations and rotations in a plane. We show how to obtain explicitly the rotation angle of E2 as a function of Λ\Lambda and we relate that angle to Berry's topological phase. Some particles admit both signs of helicity, and it is then possible to define a reduced density matrix for their polarization. However, that density matrix is physically meaningless, because it has no transformation law under the Lorentz group, even under ordinary rotations.Comment: 4 pages revte

    Communication of Spin Directions with Product States and Finite Measurements

    Get PDF
    Total spin eigenstates can be used to intrinsically encode a direction, which can later be decoded by means of a quantum measurement. We study the optimal strategy that can be adopted if, as is likely in practical applications, only product states of NN-spins are available. We obtain the asymptotic behaviour of the average fidelity which provides a proof that the optimal states must be entangled. We also give a prescription for constructing finite measurements for general encoding eigenstates.Comment: 4 pages, minor changes, version to appear in PR

    Relativistic Doppler effect in quantum communication

    Get PDF
    When an electromagnetic signal propagates in vacuo, a polarization detector cannot be rigorously perpendicular to the wave vector because of diffraction effects. The vacuum behaves as a noisy channel, even if the detectors are perfect. The ``noise'' can however be reduced and nearly cancelled by a relative motion of the observer toward the source. The standard definition of a reduced density matrix fails for photon polarization, because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states.Comment: 10 pages LaTe

    Two roles of relativistic spin operators

    Full text link
    Operators that are associated with several important quantities, like angular momentum, play a double role: they are both generators of the symmetry group and ``observables.'' The analysis of different splittings of angular momentum into "spin" and "orbital" parts reveals the difference between these two roles. We also discuss a relation of different choices of spin observables to the violation of Bell inequalities.Comment: RevTeX 4, 4 pages A discussion on relation of different choices of spin observables to the observed violation of Bell inequalities is added, some misprints corrected and the presentation is clarifie

    Negativity as a distance from a separable state

    Get PDF
    The computable measure of the mixed-state entanglement, the negativity, is shown to admit a clear geometrical interpretation, when applied to Schmidt-correlated (SC) states: the negativity of a SC state equals a distance of the state from a pertinent separable state. As a consequence, a SC state is separable if and only if its negativity vanishes. Another remarkable consequence is that the negativity of a SC can be estimated "at a glance" on the density matrix. These results are generalized to mixtures of SC states, which emerge in certain quantum-dynamical settings.Comment: 9 pages, 1 figur

    Evolution of Liouville density of a chaotic system

    Full text link
    An area-preserving map of the unit sphere, consisting of alternating twists and turns, is mostly chaotic. A Liouville density on that sphere is specified by means of its expansion into spherical harmonics. That expansion initially necessitates only a finite number of basis functions. As the dynamical mapping proceeds, it is found that the number of non-negligible coefficients increases exponentially with the number of steps. This is to be contrasted with the behavior of a Schr\"odinger wave function which requires, for the analogous quantum system, a basis of fixed size.Comment: LaTeX 4 pages (27 kB) followed by four short PostScript files (2 kB + 2 kB + 1 kB + 4 kB

    Influence of detector motion in entanglement measurements with photons

    Full text link
    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step towards the implementation of quantum information protocols in a global scale
    • …
    corecore