56,158 research outputs found

    Adittional levels between Landau bands due to vacancies in graphene: towards a defect engineering

    Get PDF
    We describe the effects of vacancies on the electronic properties of a graphene sheet in the presence of a perpendicular magnetic field: from a single defect to an organized vacancy lattice. An isolated vacancy is the minimal possible inner edge, showing an antidotlike behaviour, which results in an extra level between consecutive Landau levels. Two close vacancies may couple to each other, forming a vacancy molecule tuned by the magnetic field. We show that a vacancy lattice introduce an extra band in between Landau levels with localization properties that could lead to extra Hall resistance plateaus.Comment: 6 pages, 4 figures, few comments added after referees - accepted to publication in Phys. Rev.

    Valley polarization effects on the localization in graphene Landau levels

    Get PDF
    Effects of disorder and valley polarization in graphene are investigated in the quantum Hall regime. We find anomalous localization properties for the lowest Landau level (LL), where disorder can induce wavefunction delocalization (instead of localization), both for white-noise and gaussian-correlated disorder. We quantitatively identify the contribution of each sublattice to wavefunction amplitudes. Following the valley (sublattice) polarization of states within LLs for increasing disorder we show: (i) valley mixing in the lowest LL is the main effect behind the observed anomalous localization properties, (ii) the polarization suppression with increasing disorder depends on the localization for the white-noise model, while, (iii) the disorder induces a partial polarization in the higher Landau levels for both disorder models.Comment: 5 pages, 6 figures, extended version, with 2 new figures adde

    Inner and outer edge states in graphene rings: A numerical investigation

    Full text link
    We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of sub-bands of edge states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size requirements - higher quality figures on reques

    Probing the Effects of Lorentz-Symmetry Violating Chern-Simons and Ricci-Cotton Terms in Higher Derivative Gravity

    Full text link
    The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of operators that splits the fundamental fields according to their individual degrees of freedom. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes gets a new insight. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a time-like vector of the type vμ=(μ,0)v^{\mu} = (\mu,\vec{0}). Spectral consistency imposes taht the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to usual gauge theories whenever conditions for suppression of tachyons and ghosts are required.Comment: 15 pages. It coincides with the version published in Phys. Rev.

    Resonant tunneling through protected quantum dots at phosphorene edges

    Full text link
    We theoretically investigate phosphorene zigzag nanorribons as a platform for constriction engineering. In the presence of a constriction at the upper edge, quantum confinement of edge protected states reveals resonant tunnelling Breit-Wigner transmission peaks, if the upper edge is uncoupled to the lower edge. Coupling between edges in thin constrictions gives rise to Fano-like and anti-resonances in the transmission spectrum of the system.Comment: 8 pages,7 figure
    corecore