29,307 research outputs found

    A model for structural defects in nanomagnets

    Full text link
    A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.Comment: 8 pages, resubmitted to Journal of Applied Physic

    Weak lensing B-modes on all scales as a probe of local isotropy

    Full text link
    This article derives a multipolar hierarchy for the propagation of the weak-lensing shear and convergence in a general spacetime. The origin of B-modes, in particular on large angular scales, is related to the local isotropy of space. Known results assuming a Friedmann-Lema\^itre background are naturally recovered. The example of a Bianchi I spacetime illustrates our formalism and its implications for future observations are stressed.Comment: 10 pages, 2 figures. Replaced to match published versio

    Non-perturbative treatment of the linear covariant gauges by taking into account the Gribov copies

    Full text link
    In this paper, a proposal for the restriction of the Euclidean functional integral to a region free of infinitesimal Gribov copies in linear covariant gauges is discussed. An effective action, akin to the Gribov-Zwanziger action of the Landau gauge, is obtained which implements the aforementioned restriction. Although originally non-local, this action can be cast in local form by introducing auxiliary fields. As in the case of the Landau gauge, dimension two condensates are generated at the quantum level, giving rise to a refinement of the action which is employed to obtain the tree-level gluon propagator in linear covariant gauges. A comparison of our results with those available from numerical lattice simulations is also provided.Comment: 21 pages, no figures, version to appear in EPJ

    The role of transposable elements in the evolution of aluminium resistance in plants.

    Get PDF
    Abstract Aluminium (Al) toxicity can severely reduce root growth and consequently affect plant development and yield. A mechanism by which many species resist the toxic effects of Al relies on the efflux of organic anions (OAs) from the root apices via OA transporters. Several of the genes encoding these OA transporters contain transposable elements (TEs) in the coding sequences or in flanking regions. Some of the TE-induced mutations impact Al resistance by modifying the level and/or location of gene expression so that OA efflux from the roots is increased. The importance of genomic modifications for improving the adaptation of plants to acid soils has been raised previously, but the growing number of examples linking TEs with these changes requires highlighting. Here, we review the role of TEs in creating genetic modifications that enhance the adaptation of plants to acid soils by increasing the release of OAs from the root apices. We argue that TEs have been an important source of beneficial mutations that have co-opted OA transporter proteins with other functions to perform this role. These changes have occurred relatively recently in the evolution of many species and likely facilitated their expansion into regions with acidic soils

    High-pressure study of the non-Fermi liquid material U_2Pt_2In

    Full text link
    The effect of hydrostatic pressure (p<= 1.8 GPa) on the non-Fermi liquid state of U_2Pt_2In is investigated by electrical resistivity measurements in the temperature interval 0.3-300 K. The experiments were carried out on single-crystals with the current along (I||c) and perpendicular (I||a) to the tetragonal axis. The pressure effect is strongly current-direction dependent. For I||a we observe a rapid recovery of the Fermi-liquid T^2-term with pressure. The low-temperature resistivity can be analysed satisfactorily within the magnetotransport theory of Rosch, which provides strong evidence for the location of U_2Pt_2In at an antiferromagnetic quantum critical point. For I||c the resistivity increases under pressure, indicating the enhancement of an additional scattering mechanism. In addition, we have measured the pressure dependence of the antiferromagnetic ordering temperature (T_N= 37.6 K) of the related compound U_2Pd_2In. A simple Doniach-type diagram for U_2Pt_2In and U_2Pd_2In under pressure is presented.Comment: 21 pages (including 5 figures); pdf forma

    Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets

    Full text link
    Using a model of nonmagnetic impurity potential, we have examined the behavior of planar vortex solutions in the classical two-dimensional XY ferromagnets in the presence of a spin vacancy localized out of the vortex core. Our results show that a spinless atom impurity gives rise to an effective potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex
    corecore