32,365 research outputs found
Lande g-tensor in semiconductor nanostructures
Understanding the electronic structure of semiconductor nanostructures is not
complete without a detailed description of their corresponding spin-related
properties. Here we explore the response of the shell structure of InAs
self-assembled quantum dots to magnetic fields oriented in several directions,
allowing the mapping of the g-tensor modulus for the s and p shells. We found
that the g-tensors for the s and p shells show a very different behavior. The
s-state in being more localized allows the probing of the confining potential
details by sweeping the magnetic field orientation from the growth direction
towards the in-plane direction. As for the p-state, we found that the g-tensor
modulus is closer to that of the surrounding GaAs, consistent with a larger
delocalization. These results reveal further details of the confining
potentials of self-assembled quantum dots that have not yet been probed, in
addition to the assessment of the g-tensor, which is of fundamental importance
for the implementation of spin related applications.Comment: 4 pages, 4 figure
Bringing Together Gravity and the Quanta
Due to its underlying gauge structure, teleparallel gravity achieves a
separation between inertial and gravitational effects. It can, in consequence,
describe the isolated gravitational interaction without resorting to the
equivalence principle, and is able to provide a tensorial definition for the
energy-momentum density of the gravitational field. Considering the conceptual
conflict between the local equivalence principle and the nonlocal uncertainty
principle, the replacement of general relativity by its teleparallel equivalent
can be considered an important step towards a prospective reconciliation
between gravitation and quantum mechanics.Comment: 9 pages. Contribution to the proceedings of the Albert Einstein
Century International Conference, Paris, 18-22 July, 200
Exact edge singularities and dynamical correlations in spin-1/2 chains
Exact formulas for the singularities of the dynamical structure factor,
S^{zz}(q,omega), of the S=1/2 xxz spin chain at all q and any anisotropy and
magnetic field in the critical regime are derived, expressing the exponents in
terms of the phase shifts which are known exactly from the Bethe ansatz
solution. We also study the long time asymptotics of the self-correlation
function . Utilizing these results to supplement very
accurate time-dependent Density Matrix Renormalization Group (DMRG) for short
to moderate times, we calculate S^{zz}(q,omega) to very high precision.Comment: 4 pages, 1 figure, 1 table, published versio
Orbital multicriticality in spin gapped quasi-1D antiferromagnets
Motivated by the quasi-1D antiferromagnet CaVO, we explore
spin-orbital systems in which the spin modes are gapped but orbitals are near a
macroscopically degenerate classical transition. Within a simplified model we
show that gapless orbital liquid phases possessing power-law correlations may
occur without the strict condition of a continuous orbital symmetry. For the
model proposed for CaVO, we find that an orbital phase with coexisting
order parameters emerges from a multicritical point. The effective orbital
model consists of zigzag-coupled transverse field Ising chains. The
corresponding global phase diagram is constructed using field theory methods
and analyzed near the multicritical point with the aid of an exact solution of
a zigzag XXZ model.Comment: 9 page
Dielectric mismatch and shallow donor impurities in GaN/HfO2 quantum wells
In this work we investigate electron-impurity binding energy in GaN/HfO
quantum wells. The calculation considers simultaneously all energy
contributions caused by the dielectric mismatch: (i) image self-energy (i.e.,
interaction between electron and its image charge), (ii) the direct Coulomb
interaction between the electron-impurity and (iii) the interactions among
electron and impurity image charges. The theoretical model account for the
solution of the time-dependent Schr\"odinger equation and the results shows how
the magnitude of the electron-impurity binding energy depends on the position
of impurity in the well-barrier system. The role of the large dielectric
constant in the barrier region is exposed with the comparison of the results
for GaN/HfO with those of a more typical GaN/AlN system, for two different
confinement regimes: narrow and wide quantum wells.Comment: 6 Pages, 7 figure
The multi-thermal and multi-stranded nature of coronal rain
In this work, we analyse coordinated observations spanning chromospheric, TR
and coronal temperatures at very high resolution which reveal essential
characteristics of thermally unstable plasmas. Coronal rain is found to be a
highly multi-thermal phenomenon with a high degree of co-spatiality in the
multi-wavelength emission. EUV darkening and quasi-periodic intensity
variations are found to be strongly correlated to coronal rain showers.
Progressive cooling of coronal rain is observed, leading to a height dependence
of the emission. A fast-slow two-step catastrophic cooling progression is
found, which may reflect the transition to optically thick plasma states. The
intermittent and clumpy appearance of coronal rain at coronal heights becomes
more continuous and persistent at chromospheric heights just before impact,
mainly due to a funnel effect from the observed expansion of the magnetic
field. Strong density inhomogeneities on spatial scales of 0.2"-0.5" are found,
in which TR to chromospheric temperature transition occurs at the lowest
detectable scales. The shape of the distribution of coronal rain widths is
found to be independent of temperature with peaks close to the resolution limit
of each telescope, ranging from 0.2" to 0.8". However we find a sharp increase
of clump numbers at the coolest wavelengths and especially at higher
resolution, suggesting that the bulk of the rain distribution remains
undetected. Rain clumps appear organised in strands in both chromospheric and
TR temperatures, suggesting an important role of thermal instability in the
shaping of fundamental loop substructure. We further find structure reminiscent
of the MHD thermal mode. Rain core densities are estimated to vary between
2x10^{10} cm^{-3} and 2.5x10^{11} cm^{-3} leading to significant downward mass
fluxes per loop of 1-5x10^{9} g s^{-1}, suggesting a major role in the
chromosphere-corona mass cycle.Comment: Abstract is only short version. See paper for full. Countless pages,
figures (and movies, but not included here). Accepted for publication in the
Astrophysical Journa
Vortices in the presence of a nonmagnetic atom impurity in 2D XY ferromagnets
Using a model of nonmagnetic impurity potential, we have examined the
behavior of planar vortex solutions in the classical two-dimensional XY
ferromagnets in the presence of a spin vacancy localized out of the vortex
core. Our results show that a spinless atom impurity gives rise to an effective
potential that repels the vortex structure.Comment: 6 pages, 2 figures, RevTex
- …