87,104 research outputs found

    A model for structural defects in nanomagnets

    Full text link
    A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.Comment: 8 pages, resubmitted to Journal of Applied Physic

    Adittional levels between Landau bands due to vacancies in graphene: towards a defect engineering

    Get PDF
    We describe the effects of vacancies on the electronic properties of a graphene sheet in the presence of a perpendicular magnetic field: from a single defect to an organized vacancy lattice. An isolated vacancy is the minimal possible inner edge, showing an antidotlike behaviour, which results in an extra level between consecutive Landau levels. Two close vacancies may couple to each other, forming a vacancy molecule tuned by the magnetic field. We show that a vacancy lattice introduce an extra band in between Landau levels with localization properties that could lead to extra Hall resistance plateaus.Comment: 6 pages, 4 figures, few comments added after referees - accepted to publication in Phys. Rev.

    Inner and outer edge states in graphene rings: A numerical investigation

    Full text link
    We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of sub-bands of edge states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size requirements - higher quality figures on reques

    How hole defects modify vortex dynamics in ferromagnetic nanodisks

    Full text link
    Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.Comment: 9 pages, 4 page
    • …
    corecore