160 research outputs found

    A reassessment of the role of sucrose synthase in the hypoxic sucrose‐ethanol transition in Arabidopsis

    Get PDF
    Plants under low-oxygen availability adapt their metabolism to compensate for the lower ATP production that arises from the limited respiratory activity in mitochondria. Anaerobic glycolysis requires continuous fuelling of carbon units, also provided from sucrose. The anaerobic catabolism of sucrose is thought to require the activity of sucrose synthase, being this enzymatic reaction more energetically favourable than that of invertase. The role of sucrose synthases (SUS) for aerobic sucrose catabolism in Arabidopsis has been recently questioned since SUS mutants fail to show altered phenotype or metabolic profile. In the present paper, we analysed the role of SUS1 and SUS4, both induced by low oxygen, in plant survival and ethanol production. The results showed that mutants lacking both SUS were as tolerant to low oxygen as the wild type in most of the experimental conditions tested. Only under conditions of limiting sugar availability the requirement of SUS1 and SUS4 for ethanol production was evident, although partly compensated by invertase activities, as revealed by the use of a double mutant lacking the two major cytosolic invertases. We conclude that, contrary to general belief, the sucrose synthase pathway is not the preferential route for sucrose metabolism under hypoxia

    Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis thaliana.

    Get PDF
    Sugars act as signaling molecules, whose signal transduction pathways may lead to the activation or inactivation of gene expression. Whole-genome transcript profiling reveals that the flavonoid and anthocyanin biosynthetic pathways are strongly up-regulated following sucrose (Suc) treatment. Besides mRNA accumulation, Suc affects both flavonoid and anthocyanin contents. We investigated the effects of sugars (Suc, glucose, and fructose) on genes coding for flavonoid and anthocyanin biosynthetic enzymes in Arabidopsis (Arabidopsis thaliana). The results indicate that the sugar-dependent up-regulation of the anthocyanin synthesis pathway is Suc specific. An altered induction of several anthocyanin biosynthetic genes, consistent with in vivo sugar modulation of mRNA accumulation, is observed in the phosphoglucomutase Arabidopsis mutant accumulating high levels of soluble sugars

    Transcript profiling of chitosan-treated Arabidopsis seedlings

    Get PDF
    In nature, plants can recognize potential pathogens, thus activating intricate networks of defense signals and reactions. Inducible defense is often mediated by the detection of microbe or pathogen associated molecular pattern elicitors, such as flagellin and chitin. Chitosan, the deacetylated form of chitin, plays a role in inducing protection against pathogens in many plant species. We evaluated the ability of chitosan to confer resistance to Botrytis cinerea in Arabidopsis leaves. We subsequently treated Arabidopsis seedlings with chitosan and carried out a transcript profiling analysis using both ATH1 GeneChip microarrays and quantitative RT-PCR. The results showed that defense response genes, including camalexin biosynthesis genes, were up-regulated by chitosan, both in wild-type and in the chitin-insensitive cerk1 mutant, indicating that chitosan is perceived through a CERK1-independent pathway

    Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in Arabidopsis

    Get PDF
    The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression
    corecore