67 research outputs found

    THE EFFECT OF DIFFERENT EXTERNAL ELASTIC COMPRESSION ON MUSCLE STRENGTH, FATIGUE, EMG AND MMG ACTIVITY

    Get PDF
    The purpose of this study was to quantify the effects of three different compression conditions on (a) performance of muscle strength/power and fatigue in lower extremity, and (b) the responses of electromyography (EMG) and mechanomyography (MMG) of rectus femoris (RF) under repeated concentric muscle actions. All subjects (N=12) performed maximal voluntary contractions (MVC) and consecutive, maximal isokinetic knee extension movements at 60°/s & 300°/s velocities with three different compression conditions. The results indicated that local elastic compression of lower extremity, while not significant in improving isokinetic strength in short period, may have a positive effect on fatigue by helping maintain long-term force production through altering muscle activity in high-velocity of locomotion

    An In Vitro Barrier Model of the Human Submandibular Salivary Gland Epithelium Based on a Single Cell Clone of Cell Line HTB-41: Establishment and Application for Biomarker Transport Studies

    Get PDF
    The blood–saliva barrier (BSB) consists of the sum of the epithelial cell layers of the oral mucosa and salivary glands. In vitro models of the BSB are inevitable to investigate and understand the transport of salivary biomarkers from blood to saliva. Up to now, standardized, cell line-based models of the epithelium of the submandibular salivary gland are still missing for this purpose. Therefore, we established epithelial barrier models of the submandibular gland derived from human cell line HTB-41 (A-253). Single clone isolation resulted in five different clones (B2, B4, B9, D3, and F11). Clones were compared to the parental cell line HTB-41 using measurements of the transepithelial electrical resistance (TEER), paracellular marker permeability assays and analysis of marker expression for acinar, ductal, and myoepithelial cells. Two clones (B9, D3) were characterized to be of acinar origin, one clone (F11) to be of myoepithelial origin and one isolation (B4) derived from two cells, to be presumably a mixture of acinar and ductal origin. Clone B2, presumably of ductal origin, showed a significantly higher paracellular barrier compared to other clones and parental HTB-41. The distinct molecular identity of clone B2 was confirmed by immunofluorescent staining, qPCR, and flow cytometry. Experiments with ferritin, a biomarker for iron storage, demonstrated the applicability of the selected model based on clone B2 for transport studies. In conclusion, five different clones originating from the submandibular gland cell line HTB-41 were successfully characterized and established as epithelial barrier models. Studies with the model based on the tightest clone B2 confirmed its suitability for transport studies in biomarker research

    Directed transport of CRP across in vitro models of the blood-saliva barrier strengthens the feasibility of salivary CRP as biomarker for neonatal sepsis

    Get PDF
    C-reactive protein (CRP) is a commonly used serum biomarker for detecting sepsis in neonates. After the onset of sepsis, serial measurements are necessary to monitor disease progression; therefore, a non-invasive detection method is beneficial for neonatal well-being. While some studies have shown a correlation between serum and salivary CRP levels in septic neonates, the causal link behind this correlation remains unclear. To investigate this relationship, CRP was examined in serum and saliva samples from 18 septic neonates and compared with saliva samples from 22 healthy neonates. While the measured blood and saliva concentrations of the septic neonates varied individually, a correlation of CRP levels between serum and saliva samples was observed over time. To clarify the presence of active transport of CRP across the blood–salivary barrier (BSB), transport studies were performed with CRP using in vitro models of oral mucosa and submandibular salivary gland epithelium. The results showed enhanced transport toward saliva in both models, supporting the clinical relevance for salivary CRP as a biomarker. Furthermore, CRP regulated the expression of the receptor for advanced glycation end products (RAGE) and the addition of soluble RAGE during the transport studies indicated a RAGE-dependent transport process for CRP from blood to saliva

    Movement asymmetries in horses presented for prepurchase or lameness examination

    Get PDF
    Background The increasing popularity of objective gait analysis makes application in prepurchase examinations (PPE) a logical next step. Therefore, there is a need to have more understanding of asymmetry during a PPE in horses described on clinical evaluation as subtly lame.Objectives The objective of this study is to objectively compare asymmetry in horses raising minor vet concerns in a PPE and in horses raising major vet concerns with that found in horses presented with subtle single-limb lameness, and to investigate the effect of age/discipline on the clinicians' interpretation of asymmetry on the classification of minor vet concerns in a PPE.Study Design Clinical case-series.Methods Horses presented for PPE (n = 98) or subjectively evaluated as single limb low-grade (1-2/5) lame (n = 24, 13 forelimb lame, 11 hindlimb lame), from the patient population of a single clinic, were enrolled in the study provided that owners were willing to participate. Horses undergoing PPE were assigned a classification of having minor vet concerns (n = 84) or major vet concerns (n = 14) based on findings during the dynamic-orthopaedic part of the PPE. Lame horses were only included if pain-related lameness was confirmed by an objective improvement after diagnostic analgesia exceeding daily variation determined for equine symmetry parameters using optical motion capture. Clinical evaluation was performed by six different clinicians, each with >= 8 years of equine orthopaedic experience. Vertical movement symmetry was measured using optical motion capture, simultaneously with the orthopaedic examination. Data were analysed using previously described parameters and mixed model analysis and least squares means were used to calculate differences between groups.Results There was no effect of age or discipline on the levels of asymmetry within PPE horses raising minor vet concerns. MinDiff and RUD of the head discriminated between forelimb lame and PPE horses raising minor vet concerns; MinDiff, MaxDiff, RUD of the Pelvis, HHDswing and HHDstance did so for hindlimb lameness. Two lameness patterns differentiated both forelimb and hindlimb lame from PPE horses with minor vet concerns: RUD Poll + MinDiff Withers - RUD Pelvis and RUD Pelvis + RUD Poll - MinDiff Withers. Correcting for vertical range of motion enabled differentiation of PPE horses with minor vet concerns from PPE horses with major vet concerns.Main Limitations Objective data only based on trot on soft surface, limited number of PPE horses with major vet concerns.Conclusions Combinations of kinematic parameters discriminate between PPE horses with minor vet concerns and subtly lame horses, though overlap exists

    Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD) is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample.</p> <p>Methods</p> <p>Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing.</p> <p>Results</p> <p>In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples.</p> <p>Conclusion</p> <p>MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.</p

    Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models

    Get PDF
    <div><p>This paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data. Furthermore, it provides new opportunities for analysis and exploration of sEMG data by using the resulting Gaussian modes as atomic building blocks for a hierarchical clustering. In our experiments, composite peak models representing the general activation pattern per sensor location (one sensor on the long back muscle, three sensors on the gluteus muscle on each body side) were identified per individual for all 14 horses during walk and trot in the present study. Hereby we show the applicability of the method to identify composite peak models, which describe activation of different muscles throughout cycles of locomotion.</p></div

    The jump shot - a biomechanical analysis focused on lateral ankle ligaments

    No full text
    Handball is one of the top four athletic games with highest injury risks. The jump shot is the most accomplished goal shot technique and the lower extremities are mostly injured. As a basis for ankle sprain simulation, the aim of this study was to extend the ankle region of an existing musculoskeletal full-body model through incorporation of three prominent lateral ankle ligaments: ligamentum fibulotalare anterius (LFTA), ligamentum fibulotalare posterius (LFTP), ligamentum fibulocalcaneare (LFC). The specific objective was to calculate and visualise ligament force scenarios during the jumping and landing phases of controlled jump shots. Recorded kinematic data of performed jump shots and the corresponding ground reaction forces were used to perform inverse dynamics. The calculated peak force of the LFTA (107 N) was found at maximum plantarflexion and of the LFTP (150 N) at maximum dorsiflexion. The peak force of the LFC (190 N) was observed at maximum dorsiflexion combined with maximum eversion. Within the performed jump shots, the LFTA showed a peak force (59 N to 69 N) during maximum plantarflexion in the final moment of the lift off. During landing, the force developed by the LFTA reached its peak value (61 N to 70 N) at the first contact with the floor. After that, the LFTP developed a peak force (70 N to 118 N). This model allows the calculation of forces in lateral ankle ligaments. The information obtained in this study can serve as a basis for future research on ankle sprain and ankle sprain simulation. (C) 2011 Elsevier Ltd. All rights reserved
    corecore