2,659 research outputs found

    Seasonal changes in growth of coho salmon (Oncorhynchus kisutch) off Oregon and Washington and concurrent changes in the spacing of scale circuli

    Get PDF
    In this study we present new information on seasonal variation in absolute growth rate in length of coho salmon (Oncorhynchus kisutch) in the ocean off Oregon and Washington, and relate these changes in growth rate to concurrent changes in the spacing of scale circuli. Average spacing of scale circuli and average rate of circulus formation were significantly and positively correlated with average growth rate among groups of juvenile and maturing coho salmon and thus could provide estimates of growth between age groups and seasons. Regression analyses indicated that the spacing of circuli was proportional to the scale growth rate raised to the 0.4−0.6 power. Seasonal changes in the spacing of scale circuli reflected seasonal changes in apparent growth rates of fish. Spacing of circuli at the scale margin was greatest during the spring and early summer, decreased during the summer, and was lowest in winter or early spring. Changes over time in length of fish caught during research cruises indicated that the average growth rate of juvenile coho salmon between June and September was about 1.3 mm/d and then decreased during the fall and winter to about 0.6 mm/d. Average growth rate of maturing fish was about 2 mm/d between May and June, then decreased to about 1 mm/d between June and September. Average apparent growth rates of groups of maturing coded-wire−tagged coho salmon caught in the ocean hook-and-line fisheries also decreased between June and September. Our results indicate that seasonal change in the spacing of scale circuli is a useful indicator of seasonal change in growth rate of coho salmon in the ocean

    Network motif frequency vectors reveal evolving metabolic network organisation

    Get PDF
    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this under- lying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic network

    Ocean distribution of the American shad (Alosa sapidissima) along the Pacific coast of North America

    Get PDF
    We examined the incidental catches of American shad (Alosa sapidissima) taken during research cruises and in commercial and recreational landings along the Pacific coast of North America during over 30 years of sampling. Shad, an introduced species, was mainly found over the shallow continental shelf, and largest catches and highest frequency of occurrences were found north of central Oregon, along the coasts of Washington and Vancouver Island, and in California around San Francisco Bay. Migrations to the north off Washington and Vancouver were seen during spring to fall, but we found no evidence for large-scale seasonal migrations to the south during the fall or winter. The average weight of shad increased in deeper water. Sizes were also larger in early years of the study. Most were caught over a wide range of sea surface temperatures (11–17°C) and bottom temperatures (6.4–8.0°C). Abundance of shad on the continental shelf north of 44°N was highly correlated with counts of shad at Bonneville Dam on the Columbia River in the same year. Counts were negatively related to average weights and also negatively correlated with the survival of hatchery coho salmon (Oncorhynchus kisutch), indicating that survival of shad is favored by warm ocean conditions. Examining the catch during research cruises and commercial and recreational landings, we concluded that American shad along the Pacific coast have adapted to the prevailing environmental conditions and undertake only moderate seasonal migrations compared with the long seasonal migrations of shad along the Atlantic coast of North America. We suggest that the large spawning populations in the Columbia River and San Francisco Bay areas explain most of the distributional features along the Pacific coast

    Almost invariant half-spaces for operators on Hilbert space. II: operator matrices

    Full text link
    This paper is a sequel to [6]. In that paper we transferred the discussions in [1] and [13] concerning almost invariant half-spaces for operators on complex Banach spaces to the context of operators on Hilbert space, and we gave easier proofs of the main results in [1] and [13]. In the present paper we discuss consequences of the above-mentioned results for the matricial structure of operators on Hilbert space

    Ability of modal analysis to detect osseointegration of implants in transfemoral amputees : a physical model study

    Get PDF
    Owing to the successful use of non-invasive vibration analysis to monitor the progression of dental implant healing and stabilization, it is now being considered as a method to monitor femoral implants in transfemoral amputees. This study uses composite femur-implant physical models to investigate the ability of modal analysis to detect changes at the interface between the implant and bone simulating those that occur during osseointegration. Using electromagnetic shaker excitation, differences were detected in the resonant frequencies and mode shapes of the model when the implant fit in the bone was altered to simulate the two interface cases considered: firm and loose fixation. The study showed that it is beneficial to examine higher resonant frequencies and their mode shapes (rather than the fundamental frequency only) when assessing fixation. The influence of the model boundary conditions on the modal parameters was also demonstrated. Further work is required to more accurately model the mechanical changes occurring at the bone-implant interface in vivo, as well as further refinement of the model boundary conditions to appropriately represent the in vivo conditions. Nevertheless the ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation

    Food habits and dietary variability of pelagic nekton off Oregon and Washington, 1979-1984

    Get PDF
    The food habits of 20 species of pelagic nekton were investigated from collections made with small-mesh purse seines from 1979-84 off Washington and Oregon. Four species (spiny dogfish, Squalus acanthias; soupfin shark, Galeorhinus zyopterus; blue shark, Prionace glauca; and cutthroat trout, Salmo clarki) were mainly piscivorous. Six species (coho salmon, Oncorhynchus kisutch; chinook salmon, O. tshawytscha; black rockfish, Sebastes melanops; yellowtail rockfish, S. f1avidus; sablefish, Anoplopoma fimbria; and jack mackerel, Trachurus symmetricus) consumed both nektonic and planktonic organisms. The remaining species (market squid, Loligo opalescens; American shad, Alosa sapidissima; Pacific herring, Clupea harengus pallasi; northern anchovy, Engraulis mordax; pink salmon, O. gorbuscha; surf smelt, Hypomesus pretiosus; Pacific hake, Merluccius productus; Pacific saury, Cololabis saira; Pacific mackerel, Scomber japonicus; and medusafish, Icichthys lockingtom) were primarily planktonic feeders. There were substantial interannual, seasonal, and geographic variations in the diets of several species due primarily to changes in prey availability. Juvenile salmonids were not commonly consumed by this assemblage of fishes (PDF file contains 36 pages.
    • …
    corecore