313 research outputs found

    Topological Phases of Sound and Light

    Get PDF
    Topological states of matter are particularly robust, since they exploit global features insensitive to local perturbations. In this work, we describe how to create a Chern insulator of phonons in the solid state. The proposed implementation is based on a simple setting, a dielectric slab with a suitable pattern of holes. Its topological properties can be wholly tuned in-situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport along the edges can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases. This would be an example of a Chern insulator produced from the interaction between two physically very different particle species, photons and phonons

    Optomechanical position detection enhanced by de-amplification using intracavity squeezing

    Full text link
    It has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal to noise ratio works by de-amplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information. This enhancement works for systems with a weak optomechanical coupling and/or strong mechanical damping. This could allow for larger mechanical bandwidth of quantum limited detectors based on optomechanical devices. Our approach can be straightforwardly extended to Quantum Non Demolition (QND) qubit detection.Comment: references added, slight change

    Rapid Exploration of Topological Band Structures using Deep Learning

    No full text
    The design of periodic nanostructures allows to tailor the transport of photons, phonons, and matter waves for specific applications. Recent years have seen a further expansion of this field by engineering topological properties. However, what is missing currently are efficient ways to rapidly explore and optimize band structures and to classify their topological characteristics, for arbitrary unit cell geometries. In this work, we show how deep learning can address this challenge. We introduce an approach where a neural network first maps the geometry to a tight-binding model. This allows us to exploit any underlying space group and predict the symmetries of Bloch waves. We demonstrate how that helps to rapidly categorize a large set of geometries in terms of their band representations, identifying designs for fragile topologies. Engineering of domain walls and optimization are also accelerated by orders of magnitude. The approach is general enough to permit future applications to the geometry discovery in other classes of materials (e.g. active and nonlinear metamaterials)

    Optomechanical creation of magnetic fields for photons on a lattice

    Get PDF
    We propose using the optomechanical interaction to create artificial magnetic fields for photons on a lattice. The ingredients required are an optomechanical crystal, i.e. a piece of dielectric with the right pattern of holes, and two laser beams with the right pattern of phases. One of the two proposed schemes is based on optomechanical modulation of the links between optical modes, while the other is an lattice extension of optomechanical wavelength-conversion setups. We illustrate the resulting optical spectrum, photon transport in the presence of an artificial Lorentz force, edge states, and the photonic Aharonov-Bohm effect. Moreover, wWe also briefly describe the gauge fields acting on the synthetic dimension related to the phonon/photon degree of freedom. These can be generated using a single laser beam impinging on an optomechanical array

    All-optical trapping and acceleration of heavy particles

    Full text link
    A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum is proposed, in which two counterpropagating lasers with variable frequencies drive a beat-wave structure with variable phase velocity, thus allowing for trapping and acceleration of heavy particles, such as ions or muons. Fine control over the energy distribution and the total charge of the beam is obtained via tuning of the frequency variation. The acceleration scheme is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the particle beam. Two-dimensional, electromagnetic particle-in-cell simulations confirm the validity and the robustness of the physical mechanism.Comment: 10 pages, 3 figures, to appear in New Journal of Physic

    Controlled Shock Shells and Intracluster Fusion Reactions in the Explosion of Large Clusters

    Full text link
    The ion phase-space dynamics in the Coulomb explosion of very large (106107\sim 10^6 - 10^7 atoms) deuterium clusters can be tailored using two consecutive laser pulses with different intensities and an appropriate time delay. For suitable sets of laser parameters (intensities and delay), large-scale shock shells form during the explosion, thus highly increasing the probability of fusion reactions within the single exploding clusters. In order to analyze the ion dynamics and evaluate the intracluster reaction rate, a one-dimensional theory is used, which approximately accounts for the electron expulsion from the clusters. It is found that, for very large clusters (initial radius \sim 100 nm), and optimal laser parameters, the intracluster fusion yield becomes comparable to the intercluster fusion yield. The validity of the results is confirmed with three-dimensional particle-in-cell simulations.Comment: 25 pages, 11 figures, to appear in Physical Review

    Prospects for all-optical ultrafast muon acceleration

    Full text link
    A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum has been recently proposed [F. Peano et al., New J. Phys. 10 033028 (2008)], wherein two counterpropagating laser beams with variable frequencies drive a beat-wave structure with variable phase velocity, leading to particle trapping and acceleration. The technique allows for fine control over the energy distribution and the total charge of the accelerated beam, to be obtained via tuning of the frequency variation. Here, the theoretical bases of the acceleration scheme are described, and the possibility of applications to ultrafast muon acceleration and to the prompt extraction of cold-muon beams is discussed.Comment: 12 pages, 5 figures, to appear in Plasma Physics and Controlled Fusio

    Consumer attitudes and preference exploration towards fresh-cut salads using best–worst scaling and latent class analysis

    Get PDF
    This research explored the preferences and buying habits of a sample of 620 consumers of fresh-cut, ready-to-eat salads. A best–worst scaling approach was used to measure the level of preference stated by individuals regarding 12 attributes for quality (intrinsic, extrinsic and credence) of fresh-cut salads. The experiment was carried out through direct interviews at several large-scale retail outlets in the Turin metropolitan area (north-west of Italy). Out of the total number of questioned consumers, 35% said they did not consume fresh-cut salads. On the contrary, the rest of the involved sample expressed the highest degree of preference towards the freshness/appearance attribute, followed by the expiration date and the brand. On the contrary, attributes such as price, organic certification and food safety did not emerge as discriminating factors in consumer choices. Additionally, five clusters of consumers were identified, whose preferences are related both to purchasing styles and socio-demographic variables. In conclusion, this research has highlighted the positive attitude of consumers towards quality products backed by a brand, providing ideas for companies to improve within this sector and implement strategies to answer the needs of a new segment of consumers, by determining market opportunities that aim to strengthen local brands

    Tunneling-induced fractal transmission in Valley Hall waveguides

    Get PDF
    The Valley Hall effect provides a popular route to engineer robust waveguides for bosonic excitations such a photons and phonons. The almost complete absence of backscattering in many experiments has its theoretical underpinning in a smooth-envelope approximation that neglects large momentum transfer and is accurate only for small bulk band gaps and/or smooth domain walls. For larger bulk band gaps and hard domain walls backscattering is expected to become significant. Here, we show that in this experimentally relevant regime, the reflection of a wave at a sharp corner becomes highly sensitive on the orientation of the outgoing waveguide relative to the underlying lattice. Enhanced backscattering can be understood as being triggered by resonant tunneling transitions in quasimomentum space. Tracking the resonant tunneling energies as a function of the waveguide orientation reveals a self-repeating fractal pattern that is also imprinted in the density of states and the backscattering rate at a sharp corner

    Phase Space Crystal Vibrations: Chiral Edge States with Preserved Time-reversal Symmetry

    Get PDF
    Chiral transport along edge channels in Chern insulators represents the most robust version of topological transport, but it usually requires breaking of the physical time-reversal symmetry. In this work, we introduce a different mechanism that foregoes this requirement, based on the combination of the symplectic geometry of phase space and interactions. Starting from a honeycomb phase-space crystal of atoms, which can be generated by periodic driving of a one-dimensional interacting quantum gas, we show that the resulting vibrational lattice waves have topological properties. Our work provides a new platform to study topological many-body physics in dynamical systems
    corecore