45 research outputs found

    Positive effect of predators on prey growth rate through induced modifications of prey behaviour

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72834/1/j.1461-0248.2002.00287.x.pd

    How Dependent Are Species‐Pair Interaction Strengths On Other Species In The Food Web?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117139/1/ecy200485102754.pd

    Lethal And Nonlethal Predator Effects On An Herbivore Guild Mediated By System Productivity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117135/1/ecy2006872347.pd

    A Review Of Trait‐Mediated Indirect Interactions In Ecological Communities

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117099/1/ecy20038451083.pd

    Mechanisms Of Nonlethal Predator Effect On Cohort Size Variation: Ecological And Evolutionary Implications

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116938/1/ecy20078861536.pd

    Bias in meta-analyses using Hedges’ d

    Get PDF
    The type of metric and weighting method used in meta-analysis can create bias and alter coverage of confidence intervals when the estimated effect size and its weight are correlated. Here, we investigate bias associated with the common metric, Hedges’ d, under conditions common in ecological meta-analyses. We simulated data from experiments, computed effect sizes and their variances, and performed meta-analyses applying three weighting schemes (inverse variance, sample size, and unweighted) for varying levels of effect size, within-study replication, number of studies in the meta-analysis, and among-study variance. Unweighted analyses, and those using weights based on sample size, were close to unbiased and yielded coverages close to the nominal level of 0.95. In contrast, the inverse-variance weighting scheme led to bias and low coverage, especially for meta-analyses based on studies with low replication. This bias arose because of a correlation between the estimated effect and its weight when using the inverse-variance method. In many cases, the sample size weighting scheme was most efficient, and, when not, the differences in efficiency among the three methods were relatively minor. Thus, if using Hedges’ d, we recom

    REVISITING THE CLASSICS: CONSIDERING NONCONSUMPTIVE EFFECTS IN TEXTBOOK EXAMPLES OF PREDATOR–PREY INTERACTIONS

    Get PDF
    Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator–prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx–hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption‐based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator‐mediated prey coexistence. Revisiting classic studies enriches our understanding of predator–prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator–prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators

    Phenotypic Plasticity Opposes Species Invasions by Altering Fitness Surface

    Get PDF
    Understanding species invasion is a central problem in ecology because invasions of exotic species severely impact ecosystems, and because invasions underlie fundamental ecological processes. However, the influence on invasions of phenotypic plasticity, a key component of many species interactions, is unknown. We present a model in which phenotypic plasticity of a resident species increases its ability to oppose invaders, and plasticity of an invader increases its ability to displace residents. Whereas these effects are expected due to increased fitness associated with phenotypic plasticity, the model additionally reveals a new and unforeseen mechanism by which plasticity affects invasions: phenotypic plasticity increases the steepness of the fitness surface, thereby making invasion more difficult, even by phenotypically plastic invaders. Our results should apply to phenotypically plastic responses to any fluctuating environmental factors including predation risk, and to other factors that affect the fitness surface such as the generalism of predators. We extend the results to competition, and argue that phenotypic plasticity's effect on the fitness surface will destabilize coexistence at local scales, but stabilize coexistence at regional scales. Our study emphasizes the need to incorporate variable interaction strengths due to phenotypic plasticity into invasion biology and ecological theory on competition and coexistence in fragmented landscapes

    Effects of co-habitation between Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages on life history traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effective measures for the control of malaria and filariasis vectors can be achieved by targeting immature stages of anopheline and culicine mosquitoes in productive habitat. To design this strategy, the mechanisms (like biotic interactions with conspecifc and heterospecific larvae) regulating mosquito aquatic stages survivorship, development time and the size of emerging adults should be understood. This study explored the effect of co-habitation between <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>on different life history traits of both species under different densities and constant food supply in the habitats of the same size under semi-natural conditions.</p> <p>Methods</p> <p>Experiments were set up with three combinations; <it>Cx. quinquefasciatus </it>alone (single species treatment), <it>An. gambiae </it>s.s. alone (single species treatment); and <it>An. gambiae </it>s.s. with <it>Cx. quiquefasciatus </it>(co-habitation treatment) in different densities in semi field situation.</p> <p>Results</p> <p>The effect of co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>was found to principally affect three parameters. The wing-lengths (a proxy measure of body size) of <it>An. gambiae </it>s.s. in co-habitation treatments were significantly shorter in both females and males than in <it>An. gambiae </it>s.s single species treatments. In <it>Cx. quinquefasciatus</it>, no significant differences in wing-length were observed between the single species and co-habitation treatments. Daily survival rates were not significantly different between co-habitation and single species treatments for both <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus</it>. Developmental time was found to be significantly different with single species treatments developing better than co-habitation treatments. Sex ratio was found to be significantly different from the proportion of 0.5 among single and co-habitation treatments species at different densities. Single species treatments had more males than females emerging while in co-habitation treatments more females emerged than males. In this study, there was no significant competitive survival advantage in co-habitation.</p> <p>Conclusion</p> <p>These results suggest that co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>in semi-natural conditions affect mostly <it>An. gambiae </it>s.s. body size. Hence, more has to be understood on the effects of co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>in a natural ecology and its possible consequences in malaria and filariasis epidemiology.</p
    corecore