1,228 research outputs found

    Isothermal remanent magnetization and the spin dimensionality of spin glasses

    Full text link
    The isothermal remanent magnetization is used to investigate dynamical magnetic properties of spatially three dimensional spin glasses with different spin dimensionality (Ising, XY, Heisenberg). The isothermal remanent magnetization is recorded vs. temperature after intermittent application of a weak magnetic field at a constant temperature ThT_h. We observe that in the case of the Heisenberg spin glasses, the equilibrated spin structure and the direction of the excess moment are recovered at ThT_h. The isothermal remanent magnetization thus reflects the directional character of the Dzyaloshinsky-Moriya interaction present in Heisenberg systems.Comment: tPHL2e style; 7 page, 3 figure

    GU81, a VEGFR2 antagonist peptoid, enhances the anti-tumor activity of doxorubicin in the murine MMTV-PyMT transgenic model of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial growth factor (VEGF) is a primary stimulant of angiogenesis under physiological and pathological conditions. Anti-VEGF therapy is a clinically proven strategy for the treatment of a variety of cancers including colon, breast, lung, and renal cell carcinoma. Since VEGFR2 is the dominant angiogenic signaling receptor, it has become an important target in the development of novel anti-angiogenic therapies. We have reported previously the development of an antagonistic VEGFR2 peptoid (GU40C4) that has promising anti-angiogenic activity <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>In the current study, we utilize a derivative of GU40C4, termed GU81 in therapy studies. GU81 was tested alone or in combination with doxorubicin for <it>in vivo </it>efficacy in the MMTV-PyMT transgenic model of breast cancer.</p> <p>Results</p> <p>The derivative GU81 has increased <it>in vitro </it>efficacy compared to GU40C4. Single agent therapy (doxorubicin or GU81 alone) had no effect on tumor weight, histology, tumor fat content, or tumor growth index. However, GU81 is able to significantly to reduce total vascular area as a single agent. GU81 used in combination with doxorubicin significantly reduced tumor weight and growth index compared to all other treatment groups. Furthermore, treatment with combination therapy significantly arrested tumor progression at the premalignant stage, resulting in increased tumor fat content. Interestingly, treatment with GU81 alone increased tumor-VEGF levels and macrophage infiltration, an effect that was abrogated when used in combination with doxorubicin.</p> <p>Conclusion</p> <p>This study demonstrates the VEGFR2 antagonist peptoid, GU81, enhances the anti-tumor activity of doxorubicin in spontaneous murine MMTV-PyMT breast tumors.</p

    Migraine aura: retracting particle-like waves in weakly susceptible cortex

    Get PDF
    Cortical spreading depression (SD) has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD and aura symptoms on the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value [sigma]=1 at the instability point. We predict that human cortex is only weakly susceptible to SD ([sigma]&#x3c;1), and support this prediction by directly matching visual aura symptoms with anatomical landmarks using fMRI retinotopic mapping. We discuss the increased dynamical repertoire of cortical tissue close to [sigma]=1, in particular, the resulting implications on migraine pharmacology that is hitherto tested in the regime ([sigma]&#x3e;&#x3e;1), and potentially silent aura occurring below a second bifurcation point at [sigma]=0 on the susceptible scale

    Functional Connectivity in Tactile Object Discrimination—A Principal Component Analysis of an Event Related fMRI-Study

    Get PDF
    BACKGROUND: Tactile object discrimination is an essential human skill that relies on functional connectivity between the neural substrates of motor, somatosensory and supramodal areas. From a theoretical point of view, such distributed networks elude categorical analysis because subtraction methods are univariate. Thus, the aim of this study was to identify the neural networks involved in somatosensory object discrimination using a voxel-based principal component analysis (PCA) of event-related functional magnetic resonance images. METHODOLOGY/PRINCIPAL FINDINGS: Seven healthy, right-handed subjects aged between 22 and 44 years were required to discriminate with their dominant hand the length differences between otherwise identical parallelepipeds in a two-alternative forced-choice paradigm. Of the 34 principal components retained for analysis according to the 'bootstrapped' Kaiser-Guttman criterion, t-tests applied to the subject-condition expression coefficients showed significant mean differences between the object presentation and inter-stimulus phases in PC 1, 3, 26 and 32. Specifically, PC 1 reflected object exploration or manipulation, PC 3 somatosensory and short-term memory processes. PC 26 evinced the perception that certain parallelepipeds could not be distinguished, while PC 32 emerged in those choices when they could be. Among the cerebral regions evident in the PCs are the left posterior parietal lobe and premotor cortex in PC 1, the left superior parietal lobule (SPL) and the right cuneus in PC 3, the medial frontal and orbitofrontal cortex bilaterally in PC 26, and the right intraparietal sulcus, anterior SPL and dorsolateral prefrontal cortex in PC 32. CONCLUSIONS/SIGNIFICANCE: The analysis provides evidence for the concerted action of large-scale cortico-subcortical networks mediating tactile object discrimination. Parallel to activity in nodes processing object-related impulses we found activity in key cerebral regions responsible for subjective assessment and validation
    corecore