75 research outputs found

    Sebomic identification of sex- and ethnicity-specific variations in residual skin surface components (RSSC) for bio-monitoring or forensic applications

    Get PDF
    Background: “Residual skin surface components” (RSSC) is the collective term used for the superficial layer of sebum, residue of sweat, small quantities of intercellular lipids and components of natural moisturising factor present on the skin surface. Potential applications of RSSC include use as a sampling matrix for identifying biomarkers of disease, environmental exposure monitoring, and forensics (retrospective identification of exposure to toxic chemicals). However, it is essential to first define the composition of “normal” RSSC. Therefore, the aim of the current study was to characterise RSSC to determine commonalities and differences in RSSC composition in relation to sex and ethnicity. Methods: Samples of RSSC were acquired from volunteers using a previously validated method and analysed by high-pressure liquid chromatography–atmospheric pressure chemical ionisation–mass spectrometry (HPLC-APCI-MS). The resulting data underwent sebomic analysis. Results: The composition and abundance of RSSC components varied according to sex and ethnicity. The normalised abundance of free fatty acids, wax esters, diglycerides and triglycerides was significantly higher in males than females. Ethnicity-specific differences were observed in free fatty acids and a diglyceride. Conclusions: The HPLC-APCI-MS method developed in this study was successfully used to analyse the normal composition of RSSC. Compositional differences in the RSSC can be attributed to sex and ethnicity and may reflect underlying factors such as diet, hormonal levels and enzyme expression.Peer reviewedFinal Published versio

    The Smell of Age: Perception and Discrimination of Body Odors of Different Ages

    Get PDF
    Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20–30 years old), Middle-age (45–55), and Old-age (75–95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age

    Application of sebomics for the analysis of residual skin surface components to detect potential biomarkers of type-1 diabetes mellitus

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Metabolic imbalance in chronic diseases such as type-1 diabetes may lead to detectable perturbations in the molecular composition of residual skin surface components (RSSC). This study compared the accumulation rate and the composition of RSSC in type-1 diabetic patients with those in matched controls in order to identify potential biomarkers of the disease. Samples of RSSC were collected from the foreheads of type-1 diabetic (n = 55) and non-diabetic (n = 58) volunteers. Samples were subsequently analysed to identify individual components (sebomic analysis). There was no significant difference in the rate of accumulation of RSSC between type-1 diabetics and controls. In terms of molecular composition, 171 RSSC components were common to both groups, 27 were more common in non-diabetics and 18 were more common in type-1 diabetic patients. Statistically significant (P < 0.05) differences between diabetic and non-diabetic volunteers were observed in the recovered amounts of one diacylglyceride (m/z 594), six triacylglycerides (m/z 726-860) and six free fatty acids (m/z 271-345). These findings indicate that sebomic analysis can identify differences in the molecular composition of RSSC components between type-1 diabetic and non-diabetic individuals. Further work is required to determine the practical utility and identity of these potential biomarkers.Peer reviewedFinal Published versio

    Premenstrual Acne

    No full text

    PrÀmenstruelle Akne

    No full text

    General discussion on the use of oral retinoids in nodulocystic acne

    No full text
    • 

    corecore