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Roles of lipid metabolism in keloid development
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Abstract

Keloids are common cutaneous pathological scars that are characterised by the histological accumulation of
fibroblasts, collagen fibres, and clinically significant invasive growth. Although increasing lines of research on keloids
have revealed genetic and environmental factors that contribute to their formation, the etiology of these scars
remains unclear. Several studies have suggested the involvement of lipid metabolism, from a nutritional point of
view. However, the role that lipid metabolism plays in the pathogenesis and progression of keloids has not
previously been reviewed. The progress that has been made in understanding the roles of the pro- and anti-
inflammatory lipid mediators in inflammation, and how they relate to the formation and progression of keloids, is
also outlined. In particular, the possible relationships between mechanotransduction and lipid metabolites in keloids
are explored. Mechanotransduction is the process by which physical forces are converted into biochemical signals
that are then integrated into cellular responses. It is possible that lipid rafts and caveolae provide the location of
lipid signaling and interactions between these signaling pathways and mechanotransduction. Moreover,
interactions between lipid signaling pathway molecules and mechanotransduction molecules have been observed.
A better understanding of the lipid profile changes and the functional roles lipid metabolism plays in keloids will
help to identify target molecules for the development of novel interventions that can prevent, reduce, or even
reverse pathological scar formation and/or progression.
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Introduction
Keloids are a type of cutaneous pathological scar.
Regarding their clinical characteristics, they usually
“invade” into the neighboring healthy skin with a leading
edge that is often erythematous and pruritic, and they
are difficult to treat. In terms of their pathological
characteristics, they exhibit the accumulation of
fibroblasts and collagen fibres that are hyalinised and
eosinophilic [1]; as such, they can be considered as a
fibroproliferative disorder of the skin [2]. Increasing re-
search into the etiology of keloids has mainly centered
on genetic factors [3] and local factors, such as wound
tension [4], sebum secretion [5], and neurogenic inflam-
mation [6]. However, several studies by Louw have sug-
gested, mainly from the nutritional point of view, that
essential fatty acids may be involved in the formation
and progression of keloids [7-10], which has galvanised
research into the contribution of nutrition in keloid
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development and progression. However, the roles that
lipid metabolism may play in keloid pathogenesis have
not previously been reviewed.
Lipids mainly constitute the storage fat triglyceride and

the lipoids. The lipoids include a wide range of
functionally-active molecules, such as phospholipids, gly-
colipids, and cholesterol. In the skin, they are mainly
found in biomembrane structures (e.g., phospholipids)
and the stratum corneum (e.g., ceramides), where they
serve as membrane constituents and provide secondary
messengers. More importantly, they are functionally
involved in local inflammation and intracellular signal
transduction. A better understanding of the lipid profile
changes and functional roles of lipid metabolism in keloids
will help to identify target molecules for the development
of novel interventions that can prevent, reduce, or even
reverse pathological scar formation and/or progression.
Constitutional changes in lipid profiles in keloid
When comparing the mean concentrations of lipids, the
ratio of triglycerides in keloidal skin is 60% of that in
normal skin, although it has similar ratio of cholesterol
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and fatty acids. The cholesterol ester and wax ester
levels are reduced to 67% and 20% of the levels in nor-
mal skin, respectively [11]. This may reflect changes in
the mechanisms that cause these esters to accumulate in
the skin, namely their transfer from the dermis, adipose
tissue and serum, their synthesis in the epidermis, and
their modification by bacterial enzymes [11,12]. In rela-
tion to this, patients with keloids have been found to
consume higher levels of dietary linoleic acid (LA) and
arachidonic acid (AA) than recommended (7–11 g/d),
and they also consume α-linolenic acid (ALA), eicosa-
pentaenoic acid (EPA), and docosahexaenoic acid (DHA)
at levels below the recommended 1.1–1.5 g/d [9]. More-
over, keloids bear higher levels of AA than the skin of
keloid-prone and non-keloid-prone patients [10]. It may
result from (1) excessive dietary intake of AA itself and
its precursor LA by patients with keloids, (2) the acti-
vated phospholipase A2 (PLA2) for AA release from the
membrane pool, and (3) the infiltration of lymphocytes
and cytokine secretion in the keloid edges which deplete
inflammatory competitor of EPA [10]. Moreover, topical
glucocorticosteroids, which are often used to treat ke-
loids, can inhibit the synthesis in the epidermis and cul-
tured keratinocytes of the three key stratum corneum
lipids, namely cholesterol, fatty acids, and ceramides.
Such epidermal lipid synthesis inhibition decreases the
levels of lipid precursors for lamellar body formation
and lamellar bilayer generation [13]. This observation
supports the notion that changes in the lipid compos-
ition of keloids may be associated with their progression.

Relationship between lipid metabolism and inflammation
in keloids
Keloids are clinically characterized by chronic inflamma-
tion of the leading edges during their invasion into the
neighboring healthy skin. This is supported by the pres-
ence of infiltrating inflammatory cells on histology [2]. It
has been suggested that this prolonged, active inflamma-
tory reaction is due to cyclical skin tension, which stim-
ulates mechanotransduction pathways [14]; it may also
induce the production of neuropeptides that promote
neurogenic inflammation pathways [6]. Recently, it was
suggested that another etiological factor of keloids is
altered lipid metabolism, particularly the metabolic pro-
cesses that relate to essential fatty acids. It is possible
that these alterations may promote the inflammatory
reaction in keloids.
High levels of AA are a prominent characteristic of

keloids [10]. AA is the source of several downstream
products, including the classic eicosanoids: namely,
leukotrienes (LTs), such as LTB4; prostanoids of prosta-
glandins (PGs), such as PGE2; prostacyclins, such as
PGI; and thromboxanes (TXs) (Figure 1). These eicosa-
noids are generally considered to be pro-inflammatory
modulators. However, AA is also the source of the non-
classic eicosanoids, called lipoxins (LXs), which serve to
downregulate inflammation (Figure 1). Notably, although
PGE2 is classically thought to be pro-inflammatory, it is
increasingly being realized that it can act in an anti-
inflammatory fashion as well, as it inhibits the produc-
tion of the pro-inflammatory cytokines tumor necrosis
factor-α (TNF-α) and interleukin-1β (IL-1β) [15] and
improves the production of the anti-inflammatory
lipoxins by inducing 15-lipoxygenase (15-LOX) [16,17].
This is in accordance with the fact that, compared to
normal human dermal fibroblasts, keloid-derived fibro-
blasts (KFs) have a diminished capacity to produce PGE2
[18]. Moreover, KFs produce less PGE2 in response to
macrophage migration inhibitory factor (MIF) and have
lower E prostanoid receptor 2 levels [19]. Given that
PGE2 enhances MMP-1 expression [20], the reduced
PGE2 levels in keloids may be responsible for the
decreased MMP-1 production by keloids and their
subsequent accumulation of extracellular matrix (ECM).
Another lipid mediator, called cyclopentenone prosta-
glandin 15-deoxy- Δ12,14-prostaglandin J2 (15d-PGJ2),
also appears to have both pro-inflammatory and anti-
inflammatory activities. These activities are dependent
on its concentration: at low concentrations, it enhances
eotaxin-induced chemotaxis in eosinophils; but at high
concentrations, it inhibits eosinophil survival by indu-
cing apoptosis [21]. To our knowledge, little is known
about the roles played in keloids by other products of
AA metabolism, such as LT, PGI, and TX.
Given that AA has pro-inflammatory effects and EPA

and its downstream product, DHA, can inhibit the pro-
duction of inflammatory cytokines, such as IL-6 or
TNF-α [22-24], Louw postulated that keloids may be
treated by modulating the membrane FA composition,
namely to reduce AA levels by supplementing the diet
with GLA, DGLA, and EPA; it was proposed that this
would restore the levels of AA precursors and inflamma-
tory competitors and reduce the excessive release of AA
[10]. This notion was supported by the fact that snake
oil, which has high levels of LA, inhibits the growth of
human KFs in vitro [25]. Moreover, this traditional Afri-
can medicine, when consumed, both prevents and treats
keloids [10].
Given that keloids, as fibroproliferative disorders, are

to some extent the product of an imbalance between
pro-and anti-inflammatory processes, attention should
be paid to the “good” lipid mediators, namely, those that
resolve and antagonize inflammation and even show
antifibrotic effects, with the help of 5-LOX and 15-LOX.
These “good” mediators include the LXs, protectin Ds
(PDs), and resolvins (Rvs). Of these, the AA- and EPA-
derived LXs and the aspirin-triggered LXs (ATLs) have
endogenous anti-inflammatory, proresolving and anti-



Figure 1 Overview of the pro- and anti-inflammatory lipid modulators that are generated by lipid metabolism. Lipid metabolism
produces not only the classical pro-inflammatory lipid modulators, namely, the prostaglandins, leukotrienes, and thromboxanes, it also generates
anti-inflammatory lipid modulators, namely, lipoxins, protectins, and resolvins (in dashed boxes). The possibility that keloid formation may be
promoted by imbalances between the pro- and anti-inflammatory lipid modulators is attracting increasing interest in keloid research.
(AA: arachidonic acid; ALA:α-linolenic acid; COX: cycloxygenase; DGLA: dihomo-γ-linolenic acid; DHA: docosahexaenoic acid; ETA: eicosatrienoic
acid; EPA: eicosapentaenoic acid; GLA: γ-linolenic acid; HETrE: hydroxyeicosatrienoic acid; HPEPE: hydroperoxyeicosapentaenoic acid; HPETE;
hydroperoxyeicosatetraenoic acid; HEPE: hydroxyeicosapentaenoic acid; HETE: hydroxyeicosatetraenoic acid;LA: linoleic acid;LT: leukotriene; LOX:
lipoxygenase; LX: lipoxin; NPD1: neuroprotectin D1; PG: prostaglandin;PLA2: phospholipase A2; SA: stearidonic acid; TX: thromboxane; Rv: resolvin).
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fibrotic functions [26,27]. Supporting evidence comes
from studies on experimental dermal fibrosis: in this
model, 15-LOX and its LX metabolites play a prominent
anti-fibrotic role [28]. LXA4 and ATLa also attenuate
experimental renal [29] and pulmonary [27] fibrosis,
respectively. Similarly, the Rv and PD lipid mediators
possess potent local anti-inflammatory and resolution
properties [30]. However, although they can inhibit
fibrosis in organs such as the kidney [31], little is known
about their influence in skin and keloids. The mecha-
nisms that cause switching between the lipid mediator
classes, namely, from the generation of pro-inflam-
matory PGs and LTs to the production of anti-
inflammatory LXs, PDs, and Rvs, also remain to be
clarified. This information will help to identify the path-
ways that can be targeted to inhibit or prevent keloids.

Relationship between lipid-derived secondary messengers
and keloids
Lipids are not only constituents of the skin and can act
as pro- and anti- inflammatory factors, they are also the
source of secondary messengers that can influence the
cellular events that are responsible for the development
of keloids. These secondary messengers include diac-
ylglycerol (DAG), ceramide and AA. In terms of keloid
development, the most significant of these molecules is
DAG. DAG binds to the cysteine-rich domains of pro-
tein kinase C (PKC) [32] and high levels of DAG correl-
ate with persistent activation of PKC [33], which has
been shown to contribute to the proliferation of fibro-
blasts in keloids [10]. Another important molecule in
keloid development is ceramide, whose structure is simi-
lar to that of DAG. Ceramide is a lipid secondary
messenger that is derived from cell membrane sphingo-
myelin and influences apoptosis pathways that are in-
duced by stimuli such as Fas antigen [34,35]. Thus,
ceramide mediates extracellular signals. Compared to
normal dermal fibroblasts, KFs appear to be resistant to
ceramide-induced apoptosis because they over-express
insulin-like growth factor I (IGF-I) receptor [36]. It may
also be that Fas-mediated signals are not transduced to
ceramide in keloids and ceramide is not activated in
anti-Fas-stimulated KFs [37]. With regard to AA, al-
though it produces inflammatory factors and has long
been known to participate in messenger systems that in-
volve kinases, such as PKC, PKA, and mitogen-activated
protein kinase (MAPK) [38], whether it can serve in KFs
as secondary messengers remains unclear. Moreover, lit-
tle seems to be known about the keloid-forming roles of
other possible lipid-derived second messengers, such as
phosphatidic acid (PA), lysophosphatidic acid (LPA), and
inositol-1,4,5-triphosphate (IP3).



Huang and Ogawa Lipids in Health and Disease 2013, 12:60 Page 4 of 6
http://www.lipidworld.com/content/12/1/60
Interactions between lipids and mechanotransduction in
keloids
Lipids are essential components of the membrane, which
is the interface between the extracellular and intracellu-
lar compartments. This fact, together with the fact that
lipids and their endogenous metabolites provides pro-
and anti-inflammatory factors and secondary messen-
gers, strongly supports the notion that lipids may
influence the intracellular signaling pathways in keloids.
Keloids are fibroproliferative skin disorders that appear
increasingly to have a close relationship with local
mechanical forces, as indicated by their preferred distri-
bution in high-tension areas, their responsiveness to
tension-reduction therapy, and their high levels of
mechanotransduction pathway signaling [14,39]. Mecha-
notransduction is the process by which physical forces
are converted into biochemical signals that are then
integrated into cellular responses [40,41]. In keloids, the
mechanotransduction pathways may involve the trans-
forming growth factor-β (TGF-β)/Smad, MAPK, integ-
rin, RhoA/ROCK, Wnt/β-catenin, and TNF-α/nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-κB) pathways [42]. Therefore, research into possible
intersections between these mechanotransduction path-
ways and lipids is likely to identify pathways and poten-
tial molecules that could be targeted by anti-keloid
therapeutic approaches.
Several lines of research indicated the potential inter-

actions between lipids and mechanotransduction. Lipid
rafts are specialized plasma membrane microdomains
enriched in cholesterol and sphingolipids, which may
serve as signaling compartments [43,44]. As one type of
lipid raft, caveolae are flask-shaped plasma membrane
invaginations, whose major protein constituent is
caveolin-1 [44]. Caveolae have already been proven to be
important mechanotransduction sites in osteoblasts [45]
and endothelial cells [46]. In endothelial cells, choles-
terol depletion prevents the shear-induced activation of
MAPKs [46] and caveolin-1 phosphorylation [47], and
shear stress causes the phosphorylation of caveolin-1
and its recruitment to integrin sites [48]. Moreover, the
β1 integrin-mediated mechanotransduction in endothe-
lial cells is mediated by caveolae domains [47]. In
osteoblasts, disruption of cholesterol-rich plasma
membrane compartments significantly reduces hydro-
static pressure- and shear-induced mechanotrans-
duction. Moreover, restoration of plasma membrane
rafts causes osteoblasts to regain their mechanotran-
ducing properties [45]. The relationship between lipid
rafts/caveolae and mechanotransduction in keloids is
just being recognized. Evidence for this is that KFs have
markedly decreased caveolin-1 expression and that treat-
ment of KFs with caveolin-1 cell-permeable peptide
(cav-1p) inhibited the TGF-β1-induced up-regulation of
collagen type I, fibronectin, and α-SMA mRNA and pro-
tein expression. Moreover, the inhibitory effect of cav-1p
on KF fibronectin production could be blocked by
inhibiting the ERK1/2, but not the p38 and JNK
pathways [49]. Further research is needed to clarify the
relationship between lipids and the active mechano-
transduction in keloids.
Lipids and their metabolites may also interact and

shape the mechanotransduction pathways in keloids.
These lipid molecules could be potential targets for
pharmaceutical intervention that aims to prevent or
treat keloids. There is evidence that the lipid metabolite
PGE2 can inhibit keloid formation as follows. First, in
KFs, the IL-1β-induced up-regulation of COX-2 expres-
sion is impaired, resulting in a diminished stimulation of
PGE2 secretion by IL-1β. Second, the treatment of KFs
with PGE2 partially reverses the ability of TGF-β1 to up-
regulate the production of collagen types I and III.
Third, PGE2 inhibits KF cell migration and contraction.
Thus, PGE2 has both anti-fibroplastic and anti-
inflammatory effects on KFs [50]. Vitamin D may also
be therapeutic for keloids, as shown by the fact that
1,25-dihydroxyvitamin D3 inhibits the TGF-β1-induced
secretion by KFs of matrix proteins such as collagen I,
fibronectin, and α-SMA [51]. Moreover, there is evi-
dence that the TGF-β and vitamin D signaling pathways
may converge on SMAD [52], or at least cross-talk via
the binding of vitamin D receptor and Smad3 proteins
to their cognate DNA recognition elements [53]. The
alkylphospholipid analogue hexadecylphosphocholine
(HePC) could also be useful as a therapy because it can
inhibit the proliferation of KFs; notably, the enhanced
reorganization of collagen I in KF that is induced by
HePC relates to the up-regulation of the α2-integrin
chain [54].

Conclusion
In summary, in keloids, lipids not only serve as indis-
pensable skin components, they also actively participate
in the chronic inflammation processes that drive the de-
velopment and progression of keloids and are typically
manifested at the edge of keloid skin. Supporting this is
that the levels of the metabolic products of the AA and
EPA cascades are changed in keloids relative to normal
skin. It is also likely that there is an imbalance between
the pro-inflammatory PGs and LTs and the anti-
inflammatory LXs, PDs, and Rvs within these cascades
that promotes inflammation. Lipids also serve as reser-
voirs of secondary messengers such as DAG and AA
that contribute to fibroblast proliferation. Finally, there
is evidence that mechanotransduction (an important
etiological factor in keloid development) occurs in the
lipid rafts and caveolae of the plasma membrane.
Moreover, there are interactions between lipids and
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mechanotransduction pathway molecules, such as PGE2,
Smads, and integrin. Thus, lipid molecules and their
metabolic products may be potential pharmaceutical
targets in interventions that aim to prevent, reduce, or
even reverse keloid formation and/or progression.
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