15 research outputs found

    Universal three-dimensional crosslinker for all-photopatterned electronics

    Get PDF
    All-solution processing of large-area organic electronics requires multiple steps of patterning and stacking of various device components. Here, we report the fabrication of highly integrated arrays of polymer thin-film transistors and logic gates entirely through a series of solution processes. The fabrication is done using a three-dimensional crosslinker in tetrahedral geometry containing four photocrosslinkable azide moieties, referred to as 4Bx. 4Bx can be mixed with a variety of solution-processable electronic materials (polymer semiconductors, polymer insulators, and metal nanoparticles) and generate crosslinked network under exposure to UV. Fully crosslinked network film can be formed even at an unprecedentedly small loading, which enables preserving the inherent electrical and structural characteristics of host material. Because the crosslinked electronic component layers are strongly resistant to chemical solvents, micropatterning the layers at high resolution as well as stacking the layers on top of each other by series of solution processing steps is possible

    Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes.

    Get PDF
    Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass

    Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors

    No full text
    We have investigated the effects of thickness variation and thermal treatment of the electrode polymer poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) in photovoltaic and photodetector devices using conjugated polymer blends as the photoactive material. By variation of the PEDOT:PSS layer thickness between 25 and 150 nm, we found optimum device performance, in particular low dark current and high external quantum efficiency (EQE) and open-circuit voltage (Voc), at around 70 nm. This has been observed for two different active layers. Annealing studies on the PEDOT:PSS films, with temperatures varied between 120 and 400°C, showed an optimum device performance, in particular EQE and Voc at 250°C. This optimum performance was found to be associated with loss of water from the PSS shell of the PEDOT:PSS grains. For annealing temperatures above 260°C, device performance was dramatically reduced. This was associated with chemical decomposition leading to loss of sulfonic acid, although this did not significantly affect the in-plane conductivity. © 2009 American Chemical Society

    Impact of structural polymorphs on charge collection and non-geminate recombination in organic photovoltaic devices

    No full text
    The formation of different types of structural polymorphs of poly(3-hexyl-thiophene) (P3HT) affects the performance of organic photovoltaic (OPV) devices that use thermally-annealed P3HT:PCBM[60] blend films as photoactive layer. Here it is demonstrated that, when densely-packed and non-densely packed P3HT polymorphs co-exist in the P3HT:PCBM[60] layer, non-geminate charge recombination is fast; however, in a device non-geminate recombination is effectively overruled by efficient and fast charge carrier extraction. In stark contrast, when only a less-densely packed P3HT polymorph is present in the blend, non-geminate charge recombination losses are less pronounced, and the charge carrier extraction efficiency is lower. The antagonistic non-geminate charge recombination and charge carrier extraction processes in these systems are monitored by time-delayed-collection field (TDCF) and ultrafast transient absorption (TA) experiments. Furthermore, resonance Raman spectroscopy reveals that in the absence of the densely-packed P3HT polymorph, the energetic disorder present in the P3HT:PCBM[60] blend is higher. High-resolution atomic force microscopy imaging further identifies pronounced differences in the layer morphology when the polymorph distribution varies between unimodal and bimodal. These results indicate that less-densely packed P3HT polymorphs increase disorder and impede charge collection, leading to a reduction of the device fill factor

    Enhancement of the Power Conversion Efficiency in Organic Photovoltaics by Unveiling the Appropriate Polymer Backbone Enlargement Approach

    No full text
    Optoelectronic properties, supramolecular assemblies, and morphology variation of polymeric semiconductors are governed by six fundamental chemical features. These features are molecular weight, bond length alternation (BLA), planarity, aromatic resonance energy, substituents, and intermolecular interactions. Of these features the specific role of BLA in determining the performance of a polymeric semiconductor in practical technological applications is so far unknown. This study investigates this question and reports the novel finding that the optoelectronic, microscopic (supramolecular packing), and macroscopic (morphology variation and device performance) properties of model semiconducting polymers depend on the conjugated polymer backbone enlargement, which is directly related to the BLA. Extensive studies are performed in both single-component polymer films and their blends with fullerene derivatives. Understanding the specific structure-properties relations will lead to significant advancement in the area of organic electronics, since it will set new design rules toward further optimization of polymer chemical structures to enhance the device performances.1113sciescopu

    Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets

    No full text
    Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp(2) domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge transfer. Moreover, HOGO nanosheets with AgNWs contribute to the efficient thermal joining of AgNW networks on plastic substrates by limiting the thermal embedding of AgNWs into the plastic surface, resulting in efficient decrease of the sheet resistance. Furthermore, flexible organic photovoltaic cells with GO-modified AgNW anodes on a flexible substrate were successfully demonstrated.114sciescopu
    corecore