31 research outputs found

    Coinfection with Different Trypanosoma cruzi Strains Interferes with the Host Immune Response to Infection

    Get PDF
    A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice

    VAMP7 modulates ciliary biogenesis in kidney cells

    Get PDF
    Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis. © 2014 Szalinski et al

    Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation

    Get PDF
    Made available in DSpace on 2015-08-19T13:49:23Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) ma_martins_etal_IOC-2105.pdf: 3830001 bytes, checksum: 2629ef32ff4c6dfb811625d5ef43b612 (MD5) Previous issue date: 2015Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.University of Edinburgh. The Queen’s Medical Research Institute. Medical Research Council Centre for Inflammation Research. Edinburgh, Scotland, UK.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Laboratório de Sinalização na Inflamação. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Microbiologia. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Laboratório de Patologia Geral. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Laboratório de Sinalização na Inflamação. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Belo Horizonte, MG, Brasil.University of Edinburgh. The Queen’s Medical Research Institute. Medical Research Council Centre for Inflammation Research. Edinburgh, Scotland, UK.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox −/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils
    corecore