5 research outputs found
A Fuzzy Rule Based Remedial Priority Ranking System for Contaminated Sites
Contaminated site remediation is generally difficult, time consuming, and expensive. As a result ranking may aid in efficient allocation of resources. In order to rank the priorities of contaminated sites, input parameters relevant to contaminant fate and transport, and exposure assessment should be as accurate as possible. Yet, in most cases these parameters are vague or not precise. Most of the current remediation priority ranking methodologies overlook the vagueness in parameter values or do not go beyond assigning a contaminated site to a risk class. The main objective of this study is to develop an alternative remedial priority ranking system (RPRS) for contaminated sites in which vagueness in parameter values is considered. RPRS aims to evaluate potential human health risks due to contamination using sufficiently comprehensive and readily available parameters in describing the fate and transport of contaminants in air, soil, and groundwater. Vagueness in parameter values is considered by means of fuzzy set theory. A fuzzy expert system is proposed for the evaluation of contaminated sites and a software (ConSiteRPRS) is developed in Microsoft Office Excel 2007 platform. Rankings are employed for hypothetical and real sites. Results show that RPRS is successful in distinguishing between the higher and lower risk cases
Hydrogeological and thermal characterization of shallow aquifers in the plain sector of Piemonte region (NW Italy): implications for groundwater heat pumps diffusion
The low annual and seasonal variability of the shallow groundwater temperature in the alluvial plain aquifers of the Piemonte region (NW Italy) confirmed the potentiality of the low-enthalpy open-loop groundwater heat pumps (GWHP) diffusion to contribute to the reduction of regional greenhouse gas emissions. The distribution of mean groundwater temperatures ranged from a minimum of 10.3C to a maximum of 17.9C with a mean of 14.0C. Differences among diverse areas were slight according with the modest variations in the general climatic condition. Like the air, temperature distribution of the shallow groundwater temperatures is generally similar to topographic elevations in reverse manner. Higher temperature values recorded were typical of summer months (June, July). On the opposite lower values were measured in January and February. No significant difference phase (time) difference between air and groundwater temperature appeared in the data analysis. Besides air-temperature influence (seasonal variability) seemed strictly connected to the depth to groundwater in the measure point and it was negligible when the value was over 9.5 m. For the application of the open-loop systems, extensive examinations of the hydrogeological local conditions should be conducted at site scale and groundwater heat transport modelling should be develope