1,079 research outputs found
Phytochemical screening and antimicrobial efficacy of Alternanthera nodiflora extracts
The phytochemical constituents and antimicrobial activities of Alternanthera nodiflora extracts were analyzed. Plant sample was extracted using methanol and water. Qualitative phytochemical screening revealed the presence of alkaloids, carotenoid, flavonoids, terpenoids, cardiac glycosides, phenols and saponins while tannins were absent in both extracts. The antimicrobial potential of the extracts was tested against Staphylococcus aureus, Escherichia coli and Salmonella typhi, Candidaalbicans and Aspergillus niger. The Susceptibility patterns of the test organisms to varying concentrations (100mg/ml, 75mg/ml, 50mg/ml and 25mg/ml) of both extracts were determined by Kirby Bauer method. From this study, antimicrobial activity of the plant extracts was highest at 100mg/ml with Methanolic extract having more antimicrobial activity than aqueous extract. The extracts showed high activity against Candida albicans but no activity was observed against Aspergilus niger while the highest antibacterial activity of the extract was observed against Staphylococcus aureus.The higher antimicrobial activity in methanolic extract than aqueous extracts could be attributed to the degree of polarity of the extraction solvent.Key words: Alternanthera nodiflora, Phytochemicals, Antimicrobial activity, Extracts
Eyeblink conditioning in the infant rat: an animal model of learning in developmental neurotoxicology.
Classical conditioning of the eyeblink reflex is a relatively simple procedure for studying associative learning that was first developed for use with human subjects more than half a century ago. The use of this procedure in laboratory animals by psychologists and neuroscientists over the past 30 years has produced a powerful animal model for studying the behavioral and biological mechanisms of learning. As a result, eyeblink conditioning is beginning to be pursued as a very promising model for predicting and understanding human learning and memory disorders. Among the many advantages of this procedure are (a) the fact that it can be carried out in the same manner in both humans and laboratory animals; (b) the many ways in which it permits one to characterize changes in learning at the behavioral level; (c) the readiness with which hypotheses regarding the neurological basis of behavioral disorders can be formulated and tested; (d) the fact that it can be used in the same way across the life-span; and (e) its ability to distinguish, from normative groups, populations suffering from neurological conditions associated with impaired learning and memory, including those produced by exposure to neurotoxicants. In this article, we argue that these properties of eyeblink conditioning make it an excellent model system for studying early impairments of learning and memory in developmental neurotoxicology. We also review progress that has been made in our laboratory in developing a rodent model of infant eyeblink conditioning for this purpose
Recombination and positive selection identified in complete genome sequences of Japanese encephalitis virus
The mosquito-borne Japanese encephalitis virus (JEV) causes encephalitis in man but not in pigs. Complete genomes of a human, mosquito and pig isolate from outbreaks in 1982 and 1985 in Thailand were sequenced with the aim of identifying determinants of virulence that may explain the differences in outcomes of JEV infection between pigs and man. Phylogenetic analysis revealed that five of these isolates belonged to genotype I, but the 1982 mosquito isolate belonged to genotype III. There was no evidence of recombination among the Thai isolates, but there were phylogenetic signals suggestive of recombination in a 1994 Korean isolate (K94P05). Two sites of the genome under positive selection were identified: codons 996 and 2296 (amino acids 175 of the non-structural protein NS1 and 24 of NS4B, respectively). A structurally significant substitution was seen at NS4B position 24 of the human isolate compared with the mosquito and pig isolates from the 1985 outbreak in Thailand. The potential importance of the two sites in the evolution and ecology of JEV merits further investigation
Phylogeography of Japanese encephalitis virus:genotype is associated with climate
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
Genotype V Japanese Encephalitis Virus Is Emerging
Japanese encephalitis (JE) is a global public health issue that has spread widely to more than 20 countries in Asia and has extended its geographic range to the south Pacific region including Australia. JE has become the most important cause of viral encephalitis in the world. Japanese encephalitis viruses (JEV) are divided into five genotypes, based on the nucleotide sequence of the envelope (E) gene. The Muar strain, isolated from patient in Malaya in 1952, is the sole example of genotype V JEV. Here, the XZ0934 strain of JEV was isolated from Culex tritaeniorhynchus, collected in China. The complete nucleotide and amino acid sequence of XZ0934 strain have been determined. The nucleotide divergence ranged from 20.3% to 21.4% and amino acid divergence ranged from 8.4% to 10.0% when compared with the 62 known JEV isolates that belong to genotype I–IV. It reveals low similarity between XZ0934 and genotype I–IV JEVs. Phylogenetic analysis using both complete genome and structural gene nucleotide sequences demonstrates that XZ0934 belongs to genotype V. This, in turn, suggests that genotype V JEV is emerging in JEV endemic areas. Thus, increased surveillance and diagnosis of viral encephalitis caused by genotype V JEV is an issue of great concern to nations in which JEV is endemic
Rapid HIV testing program implementation: lessons from the emergency department
Background: The US Centers for Disease Control and Prevention (CDC) guidelines and the World Health Organization (WHO) both recommend HIV testing in health-care settings. However, neither organization provides prescriptive details regarding how these recommendations should be adapted into clinical practice in an emergency department. Methods: We have implemented an HIV-testing program in the ED of a major academic medical center within the scope of the Universal Screening for HIV Infection in the Emergency Room (USHER) Trial—a randomized clinical trial evaluating the feasibility and cost-effectiveness of HIV screening in this setting. Results and conclusion: Drawing on our collective experiences in establishing programs domestically and internationally, we offer a practical framework of lessons learned so that others poised to embark on such HIV testing programs may benefit from our experiences
Protecting Endangered Species: Do the Main Legislative Tools Work?
It is critical to assess the effectiveness of the tools used to protect endangered species. The main tools enabled under the U.S. Endangered Species Act (ESA) to promote species recovery are funding, recovery plan development and critical habitat designation. Earlier studies sometimes found that statistically significant effects of these tools could be detected, but they have not answered the question of whether the effects were large enough to be biologically meaningful. Here, we ask: how much does the recovery status of ESA-listed species improve with the application of these tools? We used species' staus reports to Congress from 1988 to 2006 to quantify two measures of recovery for 1179 species. We related these to the amount of federal funding, years with a recovery plan, years with critical habitat designation, the amount of peer-reviewed scientific information, and time listed. We found that change in recovery status of listed species was, at best, only very weakly related to any of these tools. Recovery was positively related to the number of years listed, years with a recovery plan, and funding, however, these tools combined explain <13% of the variation in recovery status among species. Earlier studies that reported significant effects of these tools did not focus on effect sizes; however, they are in fact similarly small. One must conclude either that these tools are not very effective in promoting species' recovery, or (as we suspect) that species recovery data are so poor that it is impossible to tell whether the tools are effective or not. It is critically important to assess the effectiveness of tools used to promote species recovery; it is therefore also critically important to obtain population status data that are adequate to that task
Primary screening for cervical cancer precursors by the combined use of liquid-based cytology, computer-assisted cytology and HPV DNA testing
Primary screening for cervical cancer precursors has considerably evolved with the introduction of new technology to improve the early detection of disease. The objective of this study was to elaborate a diagnostic pathway integrating liquid-based and computer-assisted cytology and human papillomavirus DNA testing to focus screening on women at risk which may be more cost-effective for the healthcare system. A single laboratory analysis was conducted during a 5-month period using liquid-based cytology followed by human papillomavirus DNA testing for women with an abnormal result or with previous abnormal cytology. Human papillomavirus prevalence was estimated by testing 909 consecutive unselected samples. All slides were then rescreened using automated cytologic testing and triaged into a high- or low-score group according to computer results. Of the 8676 slides scanned, 352 had a test result of atypical squamous cells of undetermined significance or worse. Two hundred and ninety-seven (84.3%) samples with an atypical squamous cells of undetermined significance or worse result and 100% of those with detection of high-grade squamous intraepithelial lesions and carcinomas (HSIL+) were triaged into the high-score group. The combination of instrument scores and human papillomavirus results indicated that 51.0% of high score/human papillomavirus-positive cases should be considered as ASCUS+, while 99.6% of low-score/human papillomavirus negative cases remained negative in the final cytologic diagnosis, representing 49.0% of all cases. Of the screened women 89.5% should test negative for human papillomavirus and be reported as such in the final cytologic diagnosis. In conclusion, preliminary results suggest that this diagnostic pathway has the potential to improve primary cervical cancer screening and cost-effectiveness. By using a combination of testing methods to focus screening and clinical attention to cases at risk, it would be possible to lengthen screening intervals for 90% of women and to archive without further review all low-score/human papillomavirus-negative slides, representing 50% of the screening workload
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change
Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr)
- …