528 research outputs found
Recommended from our members
Fine-Scale mapping of the 11q13 breast cancer susceptibility locus
The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799–121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000–120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Perallelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08–1.13, = 1.49 x 10). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity 8.41 x 10). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.Cancer Research UK (Grant IDs: C1287/A10118, C1287/A12014, C490/A10124, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), European Community's Seventh Framework Programme (Grant ID: HEALTH-F2-2009-223175), National Institutes of Health (Grant IDs: CA128978, CA116167, CA176785, CA116201, CA63464, CA54281, CA098758, CA132839, R01CA100374, R01CA64277, R01CA148667, R37CA70867, R01CA092447), National Institute for Health Research. See also Table K via http://dx.doi.org/10.1371/journal.pone.0160316.s003This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pone.016031
Weibull regression with Bayesian variable selection to identify prognostic tumour markers of breast cancer survival.
As data-rich medical datasets are becoming routinely collected, there is a growing demand for regression methodology that facilitates variable selection over a large number of predictors. Bayesian variable selection algorithms offer an attractive solution, whereby a sparsity inducing prior allows inclusion of sets of predictors simultaneously, leading to adjusted effect estimates and inference of which covariates are most important. We present a new implementation of Bayesian variable selection, based on a Reversible Jump MCMC algorithm, for survival analysis under the Weibull regression model. A realistic simulation study is presented comparing against an alternative LASSO-based variable selection strategy in datasets of up to 20,000 covariates. Across half the scenarios, our new method achieved identical sensitivity and specificity to the LASSO strategy, and a marginal improvement otherwise. Runtimes were comparable for both approaches, taking approximately a day for 20,000 covariates. Subsequently, we present a real data application in which 119 protein-based markers are explored for association with breast cancer survival in a case cohort of 2287 patients with oestrogen receptor-positive disease. Evidence was found for three independent prognostic tumour markers of survival, one of which is novel. Our new approach demonstrated the best specificity.PJN and SR were funded by the Medical Research Council. PJN also acknowledges partial support from the NIHR Cambridge Biomedical Research Centre.This is the accepted manuscript. The final version is available from SAGE at http://dx.doi.org/10.1177/096228021454874
Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping.
BACKGROUND: The increasing trend for incorporation of biological sample collection within clinical trials requires sample collection procedures which are convenient and acceptable for both patients and clinicians. This study investigated the feasibility of using saliva-extracted DNA in comparison to blood-derived DNA, across two genotyping platforms: Applied Biosystems Taqman™ and Illumina Beadchip™ genome-wide arrays. METHOD: Patients were recruited from the Pharmacogenetics of Breast Cancer Chemotherapy (PGSNPS) study. Paired blood and saliva samples were collected from 79 study participants. The Oragene DNA Self-Collection kit (DNAgenotek®) was used to collect and extract DNA from saliva. DNA from EDTA blood samples (median volume 8 ml) was extracted by Gen-Probe, Livingstone, UK. DNA yields, standard measures of DNA quality, genotype call rates and genotype concordance between paired, duplicated samples were assessed. RESULTS: Total DNA yields were lower from saliva (mean 24 μg, range 0.2-52 μg) than from blood (mean 210 μg, range 58-577 μg) and a 2-fold difference remained after adjusting for the volume of biological material collected. Protein contamination and DNA fragmentation measures were greater in saliva DNA. 78/79 saliva samples yielded sufficient DNA for use on Illumina Beadchip arrays and using Taqman assays. Four samples were randomly selected for genotyping in duplicate on the Illumina Beadchip arrays. All samples were genotyped using Taqman assays. DNA quality, as assessed by genotype call rates and genotype concordance between matched pairs of DNA was high (>97%) for each measure in both blood and saliva-derived DNA. CONCLUSION: We conclude that DNA from saliva and blood samples is comparable when genotyping using either Taqman assays or genome-wide chip arrays. Saliva sampling has the potential to increase participant recruitment within clinical trials, as well as reducing the resources and organisation required for multicentre sample collection.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects.
BACKGROUND: Although BRCA1 and BRCA2 mutations account for only ∼27% of the familial aggregation of ovarian cancer (OvC), no OvC risk prediction model currently exists that considers the effects of BRCA1, BRCA2 and other familial factors. Therefore, a currently unresolved problem in clinical genetics is how to counsel women with family history of OvC but no identifiable BRCA1/2 mutations. METHODS: We used data from 1548 patients with OvC and their relatives from a population-based study, with known BRCA1/2 mutation status, to investigate OvC genetic susceptibility models, using segregation analysis methods. RESULTS: The most parsimonious model included the effects of BRCA1/2 mutations, and the residual familial aggregation was accounted for by a polygenic component (SD 1.43, 95% CI 1.10 to 1.86), reflecting the multiplicative effects of a large number of genes with small contributions to the familial risk. We estimated that 1 in 630 individuals carries a BRCA1 mutation and 1 in 195 carries a BRCA2 mutation. We extended this model to incorporate the explicit effects of 17 common alleles that are associated with OvC risk. Based on our models, assuming all of the susceptibility genes could be identified we estimate that the half of the female population at highest genetic risk will account for 92% of all OvCs. CONCLUSIONS: The resulting model can be used to obtain the risk of developing OvC on the basis of BRCA1/2, explicit family history and common alleles. This is the first model that accounts for all OvC familial aggregation and would be useful in the OvC genetic counselling process.This work has been supported by grants from Cancer Research UK (C1005/A12677, C12292/A11174, C490/A10119, C490/A10124) including the PROMISE research programme, the Eve Appeal and the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge.This is the final version of the article. It first appeared from BMJ Publishing via http://dx.doi.org/10.1136/jmedgenet-2015-10307
Common genetic variation associated with increased susceptibility to prostate cancer does not increase risk of radiotherapy toxicity.
BACKGROUND: Numerous germline single-nucleotide polymorphisms increase susceptibility to prostate cancer, some lying near genes involved in cellular radiation response. This study investigated whether prostate cancer patients with a high genetic risk have increased toxicity following radiotherapy. METHODS: The study included 1560 prostate cancer patients from four radiotherapy cohorts: RAPPER (n=533), RADIOGEN (n=597), GenePARE (n=290) and CCI (n=150). Data from genome-wide association studies were imputed with the 1000 Genomes reference panel. Individuals were genetically similar with a European ancestry based on principal component analysis. Genetic risks were quantified using polygenic risk scores. Regression models tested associations between risk scores and 2-year toxicity (overall, urinary frequency, decreased stream, rectal bleeding). Results were combined across studies using standard inverse-variance fixed effects meta-analysis methods. RESULTS: A total of 75 variants were genotyped/imputed successfully. Neither non-weighted nor weighted polygenic risk scores were associated with late radiation toxicity in individual studies (P>0.11) or after meta-analysis (P>0.24). No individual variant was associated with 2-year toxicity. CONCLUSION: Patients with a high polygenic susceptibility for prostate cancer have no increased risk for developing late radiotherapy toxicity. These findings suggest that patients with a genetic predisposition for prostate cancer, inferred by common variants, can be safely treated using current standard radiotherapy regimens
The contribution of genetic variants to disease depends on the ruler
Our understanding of the genetic basis of disease has evolved from descriptions of overall heritability or familiality to the identification of large numbers of risk loci. One can quantify the impact of such loci on disease using a plethora of measures, which can guide future research decisions. However, different measures can attribute varying degrees of importance to a variant. In this Analysis, we consider and contrast the most commonly used measures-specifically, the heritability of disease liability, approximate heritability, sibling recurrence risk, overall genetic variance using a logarithmic relative risk scale, the area under the receiver-operating curve for risk prediction and the population attributable fraction-and give guidelines for their use that should be explicitly considered when assessing the contribution of genetic variants to disease
Population-Based Precision Cancer Screening: A Symposium on Evidence, Epidemiology, and Next Steps
Precision medicine, an emerging approach for disease treatment that takes into account individual variability in genes, environment, and lifestyle, is under consideration for preventive interventions, including cancer screening. On September 29, 2015, the National Cancer Institute sponsored a symposium entitled “Precision Cancer Screening in the General Population: Evidence, Epidemiology, and Next Steps”. The goal was two-fold: to share current information on the evidence, practices, and challenges surrounding precision screening for breast, cervical, colorectal, lung, and prostate cancers, and to allow for in-depth discussion among experts in relevant fields regarding how epidemiology and other population sciences can be used to generate evidence to inform precision screening strategies. Attendees concluded that the strength of evidence for efficacy and effectiveness of precision strategies varies by cancer site, that no one research strategy or methodology would be able or appropriate to address the many knowledge gaps in precision screening, and that issues surrounding implementation must be researched as well. Additional discussion needs to occur to identify the high priority research areas in precision cancer screening for pertinent organs and to gather the necessary evidence to determine whether further implementation of precision cancer screening strategies in the general population would be feasible and beneficial
A family history of breast cancer will not predict female early onset breast cancer in a population-based setting
ABSTRACT: BACKGROUND: An increased risk of breast cancer for relatives of breast cancer patients has been demonstrated in many studies, and having a relative diagnosed with breast cancer at an early age is an indication for breast cancer screening. This indication has been derived from estimates based on data from cancer-prone families or from BRCA1/2 mutation families, and might be biased because BRCA1/2 mutations explain only a small proportion of the familial clustering of breast cancer. The aim of the current study was to determine the predictive value of a family history of cancer with regard to early onset of female breast cancer in a population based setting. METHODS: An unselected sample of 1,987 women with and without breast cancer was studied with regard to the age of diagnosis of breast cancer. RESULTS: The risk of early-onset breast cancer was increased when there were: (1) at least 2 cases of female breast cancer in first-degree relatives (yes/no; HR at age 30: 3.09; 95% CI: 128-7.44), (2) at least 2 cases of female breast cancer in first or second-degree relatives under the age of 50 (yes/no; HR at age 30: 3.36; 95% CI: 1.12-10.08), (3) at least 1 case of female breast cancer under the age of 40 in a first- or second-degree relative (yes/no; HR at age 30: 2.06; 95% CI: 0.83-5.12) and (4) any case of bilateral breast cancer (yes/no; HR at age 30: 3.47; 95%: 1.33-9.05). The positive predictive value of having 2 or more of these characteristics was 13% for breast cancer before the age of 70, 11% for breast cancer before the age of 50, and 1% for breast cancer before the age of 30. CONCLUSION: Applying family history related criteria in an unselected population could result in the screening of many women who will not develop breast cancer at an early age
Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance
INTRODUCTION: The cancer stem cell (CSC) hypothesis states that tumours consist of a cellular hierarchy with CSCs at the apex driving tumour recurrence and metastasis. Hence, CSCs are potentially of profound clinical importance. We set out to establish the clinical relevance of breast CSC markers by profiling a large cohort of breast tumours in tissue microarrays (TMAs) using immunohistochemistry (IHC). METHODS: We included 4, 125 patients enrolled in the SEARCH population-based study with tumours represented in TMAs and classified into molecular subtype according to a validated IHC-based five-marker scheme. IHC was used to detect CD44/CD24, ALDH1A1, aldehyde dehydrogenase family 1 member A3 (ALDH1A3) and integrin alpha-6 (ITGA6). A 'Total CSC' score representing expression of all four CSC markers was also investigated. Association with breast cancer specific survival (BCSS) at 10 years was assessed using a Cox proportional-hazards model. This study was complied with REMARK criteria. RESULTS: In ER negative cases, multivariate analysis showed that ITGA6 was an independent prognostic factor with a time-dependent effect restricted to the first two years of follow-up (hazard ratio (HR) for 0 to 2 years follow-up, 2.4; 95% confidence interval (95% CI), 1.2 to 4.8; P = 0.009). The composite 'Total CSC' score carried independent prognostic significance in ER negative cases for the first four years of follow-up (HR for 0 to 4 years follow-up, 1.3; 95% CI, 1.1 to 1.6; P = 0.006). CONCLUSIONS: Breast CSC markers do not identify identical subpopulations in primary tumours. Both ITGA6 and a composite Total CSC score show independent prognostic significance in ER negative disease. The use of multiple markers to identify tumours enriched for CSCs has the greatest prognostic value. In the absence of more specific markers, we propose that the effective translation of the CSC hypothesis into patient benefit will necessitate the use of a panel of markers to robustly identify tumours enriched for CSCs
- …
