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Abstract

As data-rich medical datasets are becoming routinely collected, there is a grow-

ing demand for regression methodology that facilitates variable selection over a

large number of predictors. Bayesian variable selection algorithms offer an attrac-

tive solution, whereby a sparsity inducing prior allows inclusion of sets of predictors

simultaneously, leading to adjusted effect estimates and inference of which covari-

ates are most important.

We present a new implementation of Bayesian variable selection, based on a Re-

versible Jump MCMC algorithm, for survival analysis under the Weibull regression

model. A realistic simulation study is presented comparing against an alternative

LASSO based variable selection strategy in datasets of up to 20,000 covariates.

Across half the scenarios our new method achieved identical sensitivity and speci-

ficity to the LASSO strategy, and a marginal improvement otherwise. Runtimes

were comparable for both approaches, taking approximately a day for 20,000 covari-

ates. Subsequently, we present a real data application in which 119 protein-based

markers are explored for association with breast cancer survival in a case cohort of

2,287 patients with ER-positive disease. Evidence was found for three independent

prognostic tumour markers of survival, one of which is novel. Our new approach

demonstrated the best specificity.

Keywords: Survival analysis; Bayesian variable selection; Reversible Jump; Stability

Selection; Breast Cancer; Gene Expression; Penalised regression; MCMC.
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1 Introduction

As large data-rich studies are becoming routinely collected in medical research, there is

a growing need for regression techniques designed to cope with many predictors. While

the simplest approach is to analyse each variable one at a time, the results are difficult to

interpret since confounding from between-predictor associations can cloud the location of

true signals leading to elevated false positive rates. Ideally, when predictors are correlated,

multivariate regression should be performed to account for the association structure and

enable accurate inference on the subset of variables most likely to represent true effects.

However, when the number of covariates is high, traditional Ordinary Least Squares

methods suffer from over-fitting — the limited information available is spread too thinly

among the covariates leading to unstable parameter estimates with high standard errors.

This inspired the development of LASSO penalised regression by Tibshirani in 1996[1]

whereby a penalty term is included in the likelihood to encourage sparsity. The penalty

term modifies the likelihood of the regression coefficients, with a large penalty leading to

the exclusion of many variables. Typically the penalty is tuned through cross-validation

such that covariates with negligible predictive effects are removed. The over-fitting prob-

lem is thus avoided and prediction improved. Over the years there have been a num-

ber of extensions to the original method, including: SCAD[2], Elastic Net[3], Adaptive

LASSO[4] and Fused LASSO[5] each generating a class of penalties to address specific

predictive aims. Some of these methods have been applied in the genomic context to ex-

plore multi-SNP models of disease[6, 7] or to search for master predictors[8]. Extensions

to model structured sparsity via the group LASSO[9] or to impose additional hierarchical

constraints, e.g. when searching for interactions[10] have been proposed. Techniques have

been developed to obtain significance measures for the covariates, including resampling

procedures[11, 12] and, recently, a formal significance test[13, 14], as well as a modi-

fied bootstrap procedure that provides a valid approximation to the LASSO distribution

thereby enabling construction of uncertainty intervals[15].
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An alternative to penalised regression is Bayesian sparse regression, in which posterior

inference is made on the predictors, and subsets of predictors, most likely associated

with outcome. Attractive features of Bayesian sparse regression include inference of

posterior probabilities for each predictor, posterior inference on the model space and,

perhaps most importantly, the possibility of natural incorporation of prior information

into the analysis. A variety of formulations and methods for implementing Bayesian

variable selection have been developed. George and McCulloch first proposed inducing

sparsity via two-component ‘spike and slab’ mixture priors on the effect of each covariate,

consisting of a ‘spike’ either exactly at or around zero, corresponding to exclusion from

the model, and a flat ‘slab’ elsewhere[16]. Binary indicator variables are used to denote

which component each covariate belongs to; the posterior expectation of which provides

marginal posterior probabilities of effect. Sparsity is encouraged by placing priors on these

indicators which favour the ‘spike’. Such models are typically fitted using MCMC and a

number of algorithms have been developed, varying in how the spike and slab components

are formulated[16, 17, 18]. Notably, an adaptive shrinkage approach proposed by Hoti

and Sillanpaa eases the computational challenge through use of single component normal

priors, with a hyperprior on the precision that leads to an approximate spike and slab

shape, thereby avoiding the use of indicator variables and mixture component switching.

A cut-off on the magnitude of effect is used to define whether or not a covariate is included

in the model[19].

Whereas these models implement variable selection through priors on each covariate,

an alternative approach is to consider the model space as a whole and place priors on

the number of included covariates. In 1995, Green demonstrated how classical MCMC

methodology can be extended to explore models of differing dimensions using a ‘Reversible

Jump’ algorithm in which the Metropolis-Hastings acceptance ratio is modified to account

for addition and deletion of covariates during model updates[20]. The level of sparsity

is controlled through a prior on the number of included covariates. Reversible Jump

has been applied to model selection problems in many areas, including genomics and
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in particular genetic association analysis[21], meta-analysis[22, 23] and predictive model

building[24, 25] in which the ability to incorporate prior information has been exploited

in various ways.

A drawback of Reversible Jump, however, is that the dimension switching leads to

a substantial increase in algorithmic complexity. In the case of linear regression, con-

jugate closed form expressions under the normal likelihood can be exploited to avoid

MCMC sampling of covariate effects, allowing the stochastic search algorithm to focus

exclusively on the model space, dramatically simplifying the mixing of the algorithm[26].

The ‘Stochastic Shotgun Search’ (SSS) algorithm utilises this principle, and in addition

proposes a modified search algorithm which parallelises the exploration of potentially vast

model spaces while focusing on areas of high posterior mass[27]. This allows rapid iden-

tification of models with high posterior mass, at the cost of ‘formal’ posterior inference

since the model search space is deliberately restricted. Alternatively, the ‘Evolution-

ary Stochastic Search’ (ESS) algorithm, developed by Bottolo and Richardson, similarly

utilises conjugate normality to integrate over covariate effects but allows exploration of

the entire model space resulting in formal posterior inference on covariate and model

probabilities[28]. Sophisticated and efficient implementations of ESS now exist for the

analysis of continuous univariate and multivariate outcomes[29, 30]. These procedures

are very fast and are capable of analysing thousands of predictors simultaneously. Supe-

rior power and specificity in comparison to penalised regression style approaches has been

shown, which has facilitated the identification of novel genomic associations[30, 31]. For

a more detailed overview of approaches to Bayesian Variable Selection we refer readers

to the excellent review by O’Hara and Sillanpaa[32].

The Cox semi-parametric proportional hazards model is the most widely used ap-

proach for the analysis of right censored survival data. Cox regression is semi-parametric

in that the baseline hazard is ascribed no particular form and is estimated non-parametrically.

Working in the Bayesian framework, however, it was natural to choose a fully parametric

survival model for the analysis we present in this paper. Whereas a proportional hazards
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model assumes that covariates multiply the hazard by some constant, so-called ‘accel-

erated failure time’ models are a class of (typically fully parametric) survival models in

which the covariates are assumed to multiply the expected survival time. Consequently,

regression parameter estimates from accelerated failure time models are more robust to

omitted covariates[33]. The Weibull distribution is an appealing choice for fully para-

metric survival modelling since, uniquely, it has both the accelerated failure time and the

proportional hazards property; there is a direct correspondence between the parameters

under the two models[34]. Therefore hazard ratios can be inferred as in Cox regression,

but while benefiting from the accelerated failure time property. In comparison to Cox

regression, when the baseline hazard function describes the data well the Weibull model

offers greater precision in the estimation of hazard ratios. Conversely, however, the non-

parametric nature of the baseline hazard under a Cox model affords robustness over a

wider range of survival trajectories.

Unfortunately, in the context of Weibull regression for survival analysis, there are no

conjugate results to exploit and so we resort to Reversible Jump MCMC, sampling both

regression parameters and models. This is, to our knowledge, the first application of

a Reversible Jump algorithm to the Weibull model for survival analysis. After explor-

ing performance in comparison to an alternative frequentist variable selection strategy

(penalised Cox regression with stability selection), we present a real data application to

explore tumour markers of breast cancer survival in a prospective case cohort. Further

details of this study and dataset are given below.

2 Data

Breast cancer remains a significant public health problem with more than 45,000 cases

diagnosed in the UK in 2012 and, despite significant improvements over the last thirty

years[35, 36], continues to be a major cause of mortality amongst women in the western

world. Treatment currently consists of surgical excision of the tumour and adjuvant ther-
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apies which may include radiotherapy, endocrine therapy, cytotoxic chemotherapy and

targeted biological therapies depending on tumour characteristics and patient preference.

However, there is substantial heterogeneity in patient response to these therapies, all

of which are associated with significant toxicity. There is now a well established set of

pathological prognostic factors for Breast Cancer including tumour size and grade, lymph

node status, oestrogen receptor (ER) status and Human Epithermal growth factor Recep-

tor 2 (HER2) status[37, 38] which are widely used in clinical practice to guide treatment

decisions. For example, a patient with excellent prognosis may want to avoid exposing

themselves to highly toxic therapies. However, our ability to reliably identify patients

who can safely forgo adjuvant chemotherapy is limited impairing optimal clinical decision

making. Breast cancer is now known to consist of a variety of molecular subtypes[39] and

while these tools are of profound clinical utility, there is much scope to expand on this set

of prognostic risk factors which do not currently reflect the whole variety of breast cancer

leading to suboptimal clinical decisions, particularly the over-prescription of adjuvant

chemotherapy[40].

We explore a large collection of predominantly protein-based markers related to cancer

biology including markers of cancer stem cells and the tumour microenvironment, which

may underpin the molecular diversity of tumours[41, 39, 42]. Our analysis is performed

using cases from the ongoing population-based breast cancer cohort of the SEARCH

(studies of epidemiology and risk factors in cancer heredity) study; a genetic epidemiology

study with a molecular pathology component recruiting individuals resident in the east of

England. Ascertainment of breast cancer cases was conducted by the East Anglia Cancer

Registry. The study includes both prevalent and incident cases. Prevalent cases are

those who were already diagnosed with breast cancer at the time of study commencement.

Specifically, these included women diagnosed with invasive breast cancer under the age of

55 between 1991 and mid-1996 and still alive in 1996. Incident cases are those individuals

diagnosed after study commencement. These were women under the age of 70 at the time

of breast cancer diagnosis after mid-1996. The two different ER subtypes of breast cancer
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(positive and negative) are recognised as markedly different diseases biologically and

pathologically with demonstrated differences in baseline hazard over time[43]. Therefore

it is sensible to stratify on this characteristic in survival analyses of breast cancer, rather

than pool the two conditions, since prognostic markers and effects are expected to differ.

In this work we restrict our analysis to the 2,287 ER positive cases, the larger of the

two strata. Follow up work is planned to analyse the ER negative cases. The SEARCH

study is approved by the Cambridgeshire 4 Research Ethics Committee; all participants

provided written informed consent.

All analyses modelled breast cancer specific mortality, with survival times left trun-

cated at 10 years. This period was chosen since decisions relating to adjuvant therapy

are often taken according to time horizon of ten years. 11% of women suffered breast

cancer specific mortality during this follow-up, among whom the median survival time

from baseline was five years. 44% of women whose survival times were censored have not

yet been followed up for ten years — the median follow up time among these women is

seven and a half years. Data was available for the following known prognostic risk factors:

tumour size and grade, number of positive lymph nodes, HER2 status, use of chemother-

apy and hormone therapy, and whether the patient was screen detected (suggesting the

cancer was caught at an early stage though screening status is associated with improved

outcome independent of stage[44]). These covariates were adjusted for in all analyses.

Metastasis is clearly also important for breast cancer prognosis, however, since very few

women in SEARCH had metastatic breast cancer at baseline (18/2,287), we excluded it

from the models to avoid convergence issues. A sensitivity analysis including metastasis

showed no change to the results presented in this paper.

Tumour markers

Expression of a particular protein will naturally vary between people, and at different

locations in the body, including within tumours. In this experiment we sought to ascer-

tain expression levels of 73 pre-selected proteins in tumour samples taken at diagnosis
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(i.e. baseline) using a technique known as immunohistochemistry. Tumour samples were

stained with commercially available antibodies which produce a coloration, observable

under a microscope, on contact with the protein of interest. Experts scored the stained

tumour samples for the proportion of coloured cells in the biopsy (i.e. expressing the

protein) on a four-point scale, and for the average intensity of that colour on a six-point

scale. In total, intensity scores were taken for 51 proteins, and proportion scores for 45,

and both were available for the three CSC markers. In addition, expression of various

markers of immune infiltration, including CD8 and FOXP3, were measured in tumour

associated lymphocytes. In situ hybridisation methods for detection of micro RNAs were

implemented as previously described[45]. In total, 119 tumour markers were available for

exploration for association with breast cancer survival. Correlations among the various

tumour markers are shown in Figure 1a and 1b. Unsurprisingly, the two types of scoring

(intensities and proportions of expression) are generally strongly correlated when mea-

sured for the same protein (Figure 1c). Unfortunately, there was substantial missingness

among the tumour markers - see Figure 1d — with most missing for more than half the

patients. There are two main reasons for missingness; by design and technical. Since

the amount of biological material available for evaluation of novel tumour markers is

limited, it was important to prioritise. Proteins were initially evaluated in a pilot study

using only a subset of the available material. Based on preliminary analyses a judgment

was taken whether to proceed to include all available material, hence in some instances

only the data generated as part of the pilot study is available (the tumour markers with

>70% missingness). The technical causes of missing data include biological variability

e.g. differences in tumour size and dropout of samples during processing. This is a well-

known unavoidable problem when tissue-microarrays (TMAs)[46] are used to evaluate

large numbers of tumours. Fortunately, the correlation among the tumour markers (Fig-

ure 1a-c) enabled imputation of missing values - a description of how this was conducted,

and how the multiply imputed datasets were analysed is given below in the methods.
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3 Methods

3.1 The Weibull Regression Model

As noted above, we utilise the Weibull model in our sparse Bayesian regression framework

for survival analysis. It is instructive to start with a description of the simpler exponential

survival model, which the Weibull model extends. Under the exponential model, a patient

i’s hazard at time t is modelled as dependent on some P covariate values, denoted by

vector xi, through an exponential link which ensures positivity of the hazard:

λi(t) = eα+xiβ = λi (1)

β in (1) is a P -length vector of covariate effects, and α denotes an intercept term. Note the

lack of dependency on time in (1) — under the exponential model the hazard is assumed

constant over time. The corresponding survival function, for example for patient i, is

straight forward to derive as:

S(t) = e(−
∫ t

0
λidx) = e−tλi

The assumption that hazard does not depend on time is likely to be overly simplistic

for most real world scenarios. The Weibull model extends the exponential model by

modifying the survival function with a parameter k as follows:

S(t) = e(−tλi)
k

k > 0, known as the Weibull ‘shape’ parameter, induces a dependency between the hazard

and time t:

λ(t) = − d

dt
log(S(t)) = λik(λit)

k−1
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Therefore if k > 1 the baseline hazard function increases as time progresses, but if k < 1

the hazard decreases.

Likelihood

Let vector t contain the observed survival times of n patients. Typically a study will not

run long enough to observe whether or not the event occurs for each and every patient,

resulting in so-called ‘right censored’ data. That is, for some patients we only know

their minimum survival time. Therefore we also introduce an n-length vector of binary

indicators d to capture, for each patient i, whether the event was observed during their

follow up (in which case di = 1), or they were censored, in which case di = 0. If the event

was observed for patient i (and di = 1), then ti denotes their time to event. Otherwise,

ti denotes their length of follow up. The log-likelihood for parameters α,β and k can be

derived as:

log(L(α,β, k|t,X)) =
n∑

i=1

di[log(k) + k log(λi) + (k − 1) log(ti)] + (−tiλi)
k (2)

where λi is defined in (1).

3.2 Sparse Bayesian Weilbull Regression (SBWR)

We present a full Reversible Jump MCMC algorithm for fitting Weibull survival models,

in order to perform variable selection among the tumour markers. Henceforth we will

refer to this framework, described below, as SBWR (Sparse Bayesian Weibull Regression).

We start by noting that baseline variables age, whether the patient was detected via a

screening programme, chemotherapy treatment, hormone therapy, the number of positive

lymph nodes and tumour size were excluded from the model selection framework and

fixed to be included in the model at all times. Let vector δ denote the log-hazard ratios

associated with these ‘fixed effects’, and vector zi denote the corresponding covariate

values for patient i. Going forward, vector xi will be used to denote patient i’s tumour
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marker covariates only, and vector β the tumour marker log hazard ratios. P , the length

of each of these vectors, therefore now denotes the number of tumour markers we wish to

perform variable selection over. Under Reversible Jump, variable selection is facilitated

by placing a prior density on β which depends on a latent binary vector γ = (γ1, . . . , γP )

of indices indicating whether each covariate is included in the model. For covariate p,

γp = 1 indicates inclusion in the model and therefore that βp 6= 0. Conditional on the

latent variable γ, i.e. a specific selection of tumour markers included in the model, patient

i’s hazard may now be written as:

λi|γ = eα+ziδ+xi,γβγ

where vector βγ contains only the non-zero elements of β, and vector xi,γ contains pa-

tient i’s corresponding subset of covariate values. The non-zero coefficients are assigned

independent normal priors centred on 0, with a common variance σ2
β:

p(βp|γp = 1, σβ) = N(0, σ2
β) for p = 1, . . . , P (3)

Rather than fixing σβ, which controls the magnitude of included effects and therefore

can have an important impact on the efficiency of the algorithm, we use a flexible hyper-

prior to allow adaption to the data at hand. We start by noting that all tumour marker

covariates were normalised prior to analysis, so that (during modelling) all hazard ratios

correspond to a standard deviation increase in the underlying variable. We chose a

relatively informative Uniform(0,2) prior for σβ. This has an expectation/median at 1,

which would correspond to a prior with a 95% credible interval supporting hazard ratios

between 0.14 and 7.12. However, this choice equally supports much smaller values of σβ,

(which would result in more pessimistic priors) as well as values up to the maximum of

2, which corresponds to a prior with a 95% credible interval supporting hazard ratios

between 0.02 and 50.9 — well outside the range we realistically expect to observe. The

‘fixed effects’ δ were ascribed weakly informative fixed N(0, 10) priors rather than the
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hierarchical priors in (3). Since these covariates have well established associations with

breast cancer survival they clearly do not have exchangeable effects a priori with the

tumour markers, and so should not contribute to estimation of σ2
β.

The model selection framework is completed by choosing a prior for γ, the selection

of tumour markers included in the model. We used a beta-binomial prior as described by

Kohn et al.[47]:

p(γ) =

∫
p(γ|ω)p(ω)dω =

B(pγ + aω, P − pγ + bω)

B(aω, bω)
(4)

where B is the Beta function and pγ is the number of non-zero elements in γ. Formally,

pγ = γT IP where IP is the P ×P identify matrix. Conceptually, ω denotes the underlying

probability that each covariate has a non-zero effect, i.e. is included in γ. Conditional

on ω, all models of the same dimension are assumed, under this setup, equally likely a

priori. aω and bω parameterise a Beta hyper-prior on ω. Since all tumour characteristics

considered here were carefully selected for possible involvement in disease pathology, we

set aω = 1 and bω = 4 which results in a prior on the probability of a true effect centred at

20%. Note, however, that this is only weakly informative due to the modest magnitudes

of aω and bω relative to the number of tumour markers being analysed; ω should largely

be learned from the data.

Finally, we must specify priors for the intercept α and the Weibull shape parameter

k. In the spirit of Abrams et al., who provide a detailed discussion of fitting Weibull

models in the Bayesian framework[48], we place normal priors with very large variance

on α and on log(k) (the log scale is used to ensure k > 0) which approximate ‘reference’

uniform priors over the entire real line;

p(α) = N(0, 106)

p(log(k)) = N(0, 106)
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3.3 Model fitting

As noted above, we cannot calculate the posterior of such a model analytically and so

use Reversible Jump MCMC to sample from the required posterior[20]. The Reversible

Jump sampling scheme starts at an initial model and corresponding set of parameter

values, denote these γ(0) and θ(0) respectively. To sample the next model and set of

parameters, which we denote γ(1) and θ(1), we propose moving from the current state to

another model and/or set of parameter values, γ∗ and θ∗, by using a proposal function

q(γ∗,θ∗|γ,θ). We then accept these proposed values as the next sample with probability

equal to the Metropolis-Hastings ratio:

MHR =
P (D|γ∗,θ∗)p(θ∗|γ∗)p(γ∗)

P (D|γ,θ)p(θ|γ)p(γ) × q(γ,θ|γ∗,θ∗)

q(γ∗,θ∗|γ,θ)

where D is the data, P (D|.) is the Weibull likelihood function described in (2), p(θ|γ)

is the prior distribution of the parameters conditional on (that is, included in) the model,

and p(γ) is the model space prior defined in (4) . Therefore the proposed model and new

parameter values are accepted with a probability proportional to their likelihood and

prior. If this new set of values is accepted, the proposed set is accepted as γ(1) and θ(1);

otherwise, the sample value remains equal to the current sample value, i.e., γ(1) = γ(0)

and θ(1) = θ(0). It can be shown that this produces a sequence of parameter samples

that converge to the required posterior distribution[20]. The algorithm was implemented

in Java; for technical details, for example the proposal distributions, we refer readers to

the supplementary methods.

3.4 Post Processing

For all SBWR analyses of datasets with 119 covariates presented, i.e. the SEARCH data

and the simulated datasets, the algorithm was run for 1 million iterations, after a burn-in

of 1 million iterations, generating samples of all parameters. For the high-dimensional

simulated datasets described below, the algorithm was run for 5 million iterations, after
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a burn-in of 5 million iterations for 10,000 covariates, and 10 million iterations after a

burn-in of 10 million iterations for 20,000 covariates. These run lengths were deliberately

longer than necessary for convergence, which was assessed using autocorrelation plots of

the variable selections (see Supplementary Figure S2), chain plots of parameter values

over the RJMCMC iterations (Supplementary Figure S3), and comparison of posterior

probabilities obtained using different RJMCMC chains (Supplementary Figure S5). For

each tumour marker covariate, complementary output was produced: The marginal pos-

terior probability of inclusion, and the posterior median hazard ratio (and 95% credible

interval) conditional on inclusion in the model. Furthermore, we obtain the posterior

probability of any particular model, i.e. combination of covariates.

3.5 Multiple Imputation for Missingness

As noted above, there is substantial missingness among the covariates in the SEARCH

breast cancer dataset. Since our algorithm currently cannot handle missingness, we

proceeded to impute the missing values prior to analysis using multiple imputation by

chained equations (MICE)[49, 50]; a well established and popular method of imputing

missing data[51]. The MICE algorithm proceeds as follows. Initially, all missing values are

filled in at random. Then, the first covariate with missing values, x1 say, is regressed on all

other covariates (and outcome), restricted to individuals with x1 observed. The missing

x1 values are then updated with posterior predictive simulations from the resulting fitted

model. This process is repeated for each covariate in turn to complete the first ‘cycle’.

Subsequently, for each imputed dataset, 10 more ‘cycles’ were run to stabilise results.

The entire procedure is then repeated independently M times resulting in a collection

of completed datasets, the differences between which reflect uncertainty in the imputed

values. We generated 20 imputed datasets in this manner using the STATA package

‘ICE’[52]. The choice of imputation models fitted for each covariate depend on the nature

of its distribution. For the tumour markers, which are measured on an ordered categorical

scale, ordinal regression was used to generate their posterior predictive distributions each
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‘cycle’. Likewise, ordinal regression was used for tumour size and grade, and positive

lymph nodes which were treated as ordered categorical variables in this analysis. For the

binary variables chemotherapy and screen detection logistic regression was used, and for

morphology — an unordered categorical variable — multinomial logistic regression was

used.

Bayesian analysis of multiply imputed datasets

To analyse multiply imputed datasets in a Bayesian framework, we follow the approach

suggested by Gelman et al.[53] which is to (i) simulate many draws from the posterior

distribution in each imputed dataset and (ii) mix all resulting draws into a single posterior

sample. This final ‘super’ posterior therefore reflects the imputation uncertainty due to

the heterogeneity among the chain-specific posteriors which have been pooled together.

3.6 Complementary Pairs Stability Selection

In the following sections, we will compare our method against a stability selection strat-

egy utilising penalised regression of the LASSO form[1]. Stability selection was recently

popularised by Meinshausen and Buhlmann[11] and aims to improve the selection of

variables provided by penalised regression methods by adding a resampling step which

involves repeating the variable selection procedure (in our case, LASSO regression) in a

large number of datasets randomly sampled from the original. For each subsample anal-

ysis the covariates selected and rejected by LASSO are recorded. ‘Selection probabilities’

are then calculated across the results of all sub-sampled datasets. Intuitively this provides

a measure of significance for each covariate since the strongest signals should be more ro-

bust to perturbations of the data. Theoretical results have been derived which offer upper

bounds on the number of ‘noise’ variables for various thresholds on these selection prob-

abilities, allowing inference of statistically significant predictors[11]. These results were

recently improved upon by Shah and Samworth[12], who propose sub-sampling exactly

half the data for each subset analysis and, each time this done, analysing both halves
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(i.e. the two complementary pairs) of the partitioned dataset. They provide a novel set of

theoretical results to estimate the rate of ‘noise’ variables selected at different thresholds

on the resulting selection probabilities. Their method leads to less conservative selections

of covariates — a known issue with stability selection[12].

4 Simulation Study

In this section we used simulated data to investigate the performance of SBWR poste-

rior probabilities in identifying true signal variables from noise variables. We compared

performance against the selections provided by LASSO cox regression with the penalty

parameter set to the optimum under ten fold cross-validation, and against the selection

probabilities from Lasso Cox regression under CPSS.

4.1 Generation of the simulated data

Initially, simulated datasets were designed to have the same number of patients and covari-

ates as the SEARCH breast cancer dataset, and the same real-life correlation structure as

amongst the tumour markers. Hence, the covariate matrix of 119 tumour markers among

the 2,287 ER positive patients was used from the SEARCH dataset in each replicate

simulated dataset. We chose to ignore the missingness in the real data for the simula-

tion study, simply to avoid the computational burden that would have arisen if multiple

imputation chains were analysed for each replicate simulated dataset. Missing covariate

values were filled in, arbitrarily, from the first multiple imputation chain.

Generation of simulated survival outcomes

We simulated outcome data according to the Generalized gamma parametric survival

model, a flexible framework encompassing four of the commonly used parametric sur-

vival models (exponential, Weibull, log-normal and gamma) as special cases[54, 55]. In

comparison to the Weibull, the Generalized gamma uses an extra parameter to model
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the hazard function, thus enabling a wider range of survival trajectories to be captured.

Using the parameterisation of Prentice [54], in terms of three parameters µ, σ and q, the

hazard function is described by:

λ(t) =
|q|

σtΓq−2
exp(q−2(qw − eqw))(q−2)q

−2

when q 6= 0 and where w = (log(t)− µ)/σ. When q = 0 the hazard function becomes:

λ(t) =
1√
2πσt

exp{− 1

2σ2
(log(t)− µ)2}

When q = 1, the Generalised gamma reduces to the Weibull with k = 1/σ and λ =

exp(−µ). For a more detailed description of the Generalized gamma and relationship with

other survival models we recommend referring to Cox et al[55] and Jackson et al[56]. To

capture associations between predictors and outcome the parameter µ may be substituted

for the standard linear predictor. Therefore, to induce associations between the covariates

and outcome in the simulated data we drew survival times from a Generalised gamma

distribution with

µ = α + βX

where the covariate matrix X is that of the real data from the first imputation chain,

and β is a vector of 119 tumour marker effects on survival. Note that the effects in a

Generalized gamma model do not correspond to hazard ratios since hazards are no longer

proportional under the more complex likelihood. Since, however, the Generalized gamma

model has the accelerated failure-time property they do still correspond to differences

in expected survival time. For the covariate effects, β, 12 were randomly selected (ap-

proximately 10%) to have ‘true’, i.e. non-zero, effects. This random selection was only

carried out once and used for all the simulation scenarios described below. We wished

to use realistic effect magnitudes and so assigned these parameters the 12 largest co-

efficients from one-at-a-time Generalized gamma regressions of each tumour marker in
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the real data. That is, effect sizes observed in the real data were used, but arbitrarily

re-assigned to different covariates. The absolute values of the 12 non-null elements of β

ranged from 0.25 to 0.38 (note that all covariates were standardised to have unit vari-

ance). To determine realistic values for the remaining parameters α, σ and q we fitted

a Generalized gamma regression model including an intercept term only (i.e. the ‘null’

model) in the real dataset. The resulting estimates of α, σ and q (3.28, 0.80, and -2.19

respectively) were used in the subsequent simulations. As noted above, the Generalized

gamma is equivalent to the Weibull when q = 1. Since we are using q = −2.19, the

simulated survival times are not Weibull distributed. This was done on purpose so that

the simulation setup does not give an unfair advantage to SBWR, the only of the three

methods to use the parametric Weibull likelihood, rather than the semi-parametric Cox

likelihood.

Survival times were drawn from a Generalized gamma distribution according to the

resulting linear predictor and parameters described above, and truncated at 10 years to

mimic the actual data. Survival status was set to ‘survived’ where the survival time

exceeded 10 years (before truncation), and ‘died’ otherwise. Using the same parameters,

survival outcomes were re-drawn 20 times to create 20 replicate simulated datasets of

2,287 ‘patients’ each. This process was repeated to generate additional simulated datasets

in which the covariate effect sizes used for the simulations were halved to create a harder

problem for the regression models, and again setting all covariate effects to zero to examine

performance under the null. Generalized gamma simulation draws and regression model

fitting was carried out using the excellent R package ‘flexsurv’, developed by Jackson et

al[56].

High Dimensional Data Simulations

We also expanded the simulation setup to explore the performance of our method in

much larger datasets, that is with more samples than covariates. To this end, we dupli-

cated the covariate matrix described above, X, multiple times column-wise (i.e. to add
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covariates). Each time a duplicate was added the rows were randomised such that none

of the newly added covariates would be co-linear with their counterparts in the original,

and first instance of, X. This process was repeated until P = 10, 000 and P = 20, 000

covariates were present, resulting in two new high-dimensional covariate matrices with

2,287 ‘patients’ each. To clarify, these consist of 119-covariate wide blocks within which

the correlation structure is that among the SEARCH tumour markers. Covariates within

each block, however, are independent of covariates in all other blocks.

To investigate performance in the ‘needle in a haystack’ setting, outcomes were drawn

exactly as above, with the same effects at the same 12 tumour markers (arbitrarily using

the first instance of X). All other covariates were assigned null effects such that only

12/10,000 and 12/20,000 covariates had effects in the resulting high-dimensional simu-

lated datasets. As above, outcomes were drawn 20 times, and the process repeated for

‘full size’, ‘half size’ and no effects.

4.2 Analysis of simulated datasets

All simulation analyses were carried out on Intel Xeon E5-2640 2.50GHz processors.

LASSO Penalised Cox Regression

Each simulated dataset was analysed using LASSO penalised Cox regression as imple-

mented in the excellent R package ‘glmnet’[57]. 10-fold cross-validation was used to

choose the penalisation coefficient, and the selection of variables at the resulting optimum

was recorded. These analyses took less than a minute per replicate for 119 covariates,

around 19 minutes for 10,000 covariates and and around 28 minutes for 20,000 covariates.

LASSO Penalised Cox Regression with CPSS

Each simulated data set was also analysed using LASSO penalised Cox regression under

Complementary Pairs Stability Selection (CPSS). 50 sets of complementary pairs were

used as recommended by Shah and Samworth[12]. For each of the resulting 100 sub-
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datasets, as above, the LASSO penalisation coefficient was optimised under 10-fold cross-

validation. The resulting covariate selection probabilities were recorded. These took

about 3 minutes per replicate for 119 covariates, around 18 hours for 10,000 covariates

and around 25 hours for 20,000 covariates.

SBWR

For the simulations we assumed a complete lack of prior information and set a = 1 and

b = 1 in the beta-binomial prior on model space. This corresponds to a naive, weakly

informative, Uniform prior on the probability for a covariate to be truly causal. For the

analysis of datasets with 119 covariates, 2 million RJMCMC iterations were run which

took around 1 hour per replicate. For analyses of datasets with 10,000 covariates, 10

million iterations were run (about 9hrs per replicate), and for the datasets with 20,000

covariates, 20 million iterations were run (about 28 hours per replicate).

4.3 ROC Analysis for selection of true effects

We used ROC analysis to assess the ability of each approach to discriminate the 12 true

signal variables from the noise variables in the simulated datasets. The resulting ROC

curves for the different scenarios are shown in Figure 2 and the corresponding AUCs in

Table 1. When the number of covariates was equivalent to the SEARCH dataset (i.e.

119) and ‘full size’ effects were simulated, the CPSS and SBWR selection probabilities

demonstrated excellent, and equal, performance, and modest improvements over the sim-

ple LASSO. Both achieved average Areas Under the ROC Curve (AUC)s of 0.99 for

discriminating the 12 true signal variables from the noise variables, compared to 0.92

for the LASSO selections. Under the harder ‘half size’ log-HR scenario, the posterior

probabilities from SBWR demonstrated marginally better discrimination than the CPSS

selection probabilities (average ROC AUC 0.97 vs 0.93). Again, both beat the LASSO se-

lections - this time by a more substantial margin - which achieved an average ROC AUC

of 0.86. Relative performance was similar in the high-dimensional simulated datasets
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of 10,000 and 20,000 covariates. SBWR and CPSS selection probabilities consistently

outperformed the LASSO selections for discriminating the 12 true effects, with equal

performance for the ‘full size’ effect scenario, and a marginal improvement in SBWR per-

formance for the‘half size’ effect scenario. Under ‘full size’ simulated effects, the ability

of SBWR and CPSS to discriminate the 12 signal variables from noise remained excellent

up to 20,000 covariates, with average ROC AUCs >0.95, and LASSO also performed

well (AUCs >0.92). When ‘half size’ effects were used the performance of all methods

remained strong up to 10,000 covariates, but deteriorated by 20,000 covariates - SBWR

and CPSS AUCs dropped to 0.82 and 0.78 respectively, while the mean LASSO AUC

dropped to 0.72.

4.4 Performance under the null

Table 1 also includes median, and 2.5th to 97.5th percentile ranges, of the CPSS and

SBWR selection probabilities, and mean selection probabilities from the LASSO anal-

yses across covariates and simulation replicates under the null. There was no obvious

cause for concern from any of the methods. When 119 covariates were analysed, SBWR

demonstrated the smallest selection rates (mean 0.14 compared to 0.48 from Lasso under

CPSS, and 0.60 from Lasso), though it should be kept in mind these selection probabili-

ties from Lasso and CPSS do not have the same interpretation as posterior probabilities.

Performance of all methods under the null was superior in the high dimensional data,

with mean rates all under 1E − 3.

5 Tumour markers of breast cancer Survival in SEARCH

In this section we apply SBWR to explore a collection of tumour markers for association

with breast cancer survival using data from 2,287 ER positive women collected as part

of the SEARCH study. In the first instance, we restricted the analysis to the 75 tumour

markers for which the majority of values were observed rather than imputed (i.e. those
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with missingness less than 50% — see Figure 1d). Analyses were also conducted using

LASSO Cox regression with CPSS, and standard Weibull regressions including both each

tumour marker one-at-a-time, a straight forward strategy that might typically be used

here, and all tumour markers at once in a ‘saturated’ model.

To account for data missingness, 20 multiply imputed datasets were analysed indepen-

dently using SBWR, and posterior results pooled, as described in the methods. Similarly,

LASSO regressions under CPSS were performed in each multiply imputed dataset, and

the resulting selection probabilities were averaged. For the one-at-a-time and ‘saturated’

Weibull regressions, results from each imputation chain were combined using Rubin’s

rules, as is standard practice[58]. Known predictors number of positive lymph nodes,

tumour size and grade, detection by screening, chemotherapy, hormone therapy and mor-

phology were fixed to be adjusted for the SBWR and LASSO models at all times, and

adjusted for in the one-at-a-time regressions, in addition to age of diagnosis and study

entry delay as possible confounders. In all frameworks, the tumour markers were anal-

ysed as ordinal continuous, assuming additive relationships with log-Hazards across all

levels of the scales used in their measurement. Number of positive lymph nodes, tumour

size, tumour grade and diagnosis age were also modelled as ordinal continuous variables

using the levels derived by Wishart et al. to provide the best fitting additive relationship

with log-hazards using an independent collection of 5,694 breast cancer patients[37] (see

Table 3 for the categorisations).

Evidence of association for each tumour marker under SBWR and CPSS are shown

in Figure 3a-b. Under SBWR, there was strong evidence of protective effects at PDCD4

(HR: 0.75 (0.62, 0.89), MPPI=84%) and the proportion score for PGR (HR: 0.86 (0.80,

0.93), MPPI=92%), and of a risk effect of AURKA (HR: 1.30 (1.11, 1.51), MPPI=68%).

These three tumour markers were selected simultaneously in most of the top 20 models,

providing strong evidence they represent independent effects on survival (Table 2). The

Bayesian false discovery rate among these three tumour markers was estimated to be

19% which, while larger than we might have hoped, is to be expected since none of their
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posterior probabilities are decisive (please see the supplementary methods for a formal

definition of the Bayesian false discovery rate). There was another ‘band’ of tumour

markers for which there was suggestive evidence of association: the intensity score for

GATA3, the proportion score for BCL2, and the proportion score for CD8 had similar

posterior probabilities between 26% and 30%. However, the false discovery rate estimate

increases to 45% when these tumour markers are included in the selection. Detailed

results for these top six tumour markers under SBWR, in addition to the fixed effects

and key model parameters, are presented in Table 3. The posterior distribution across

the number of tumour markers included by SBWR had a large weight at 5 and above,

the posterior probability of which was 63% (Supplementary Figure S1). This suggests

that while the model may not be able to clearly discriminate among the more weakly

associated tumour markers, there is more signal among these tumour markers than the

top three associations, and that a future predictive model may benefit from leniency in

which tumour markers are included. Interestingly, key prognostic factors tumour grade

and HER2 had weaker effects upon inclusion of the tumour markers, suggesting that part

of their association with survival may be through the tumour markers measured in this

study (Supplementary Table S1). Variable selection auto-correlation plots (Supplemen-

tary Figure S2) and trace plots (Supplementary Figure S3) were consistent with conver-

gence. Reassuringly, Supplementary Figure S4 shows that results were indistinguishable

using more optimistic beta-binomial prior parameter choices of aω = 1, bω = 3 (centring

the prior proportion of signals on 1/3) and a more pessimistic choice of aω = 1, bω = 9

(centring the prior proportion of signals on 0.1), as well as between different chains and

starting values (Supplementary Figure S5). Furthermore, the results for the top tumour

markers were consistent between inclusion or exclusion of imputed data (Supplementary

Figure S6).

Encouragingly, the CPSS analysis ascribed the strongest selection probabilities to

the same top three tumour markers as SBWR. Furthermore, the estimated percentage

of ‘noise’ variables among these proteins was similar to the Bayesian false discovery
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rate estimate at 21%. There was somewhat less separation among the CPSS selection

probabilities (Figure 3b) such that other markers, which were assigned weaker evidence

under SBWR, achieved similar selection probabilities to the top three signals. In the

one-at-a-time regressions (Supplementary Figure S7a), as under SBWR, there was strong

evidence for PDCD4 and the proportion score for PGR with p-values for association that

easily surpassed a multiplicity adjusted Bonferroni threshold of 6.7×10−4 (p = 4.6×10−5

and 1.1 × 10−6 respectively - Figure 3a). However, the intensity score for PGR, which

was ruled out under SBWR as confounded by its strong association with the proportion

score, also reached significance (p=1.9×10−4). AURKA, which obtained strong evidence

of association under SBWR, was not significant falling short of the Bonferroni threshold

(p=1.05 × 10−3). As in this application the number of predictors is smaller than the

number of subjects, we also estimated a saturated Weibull model which included all 75

tumour markers simultaneously. In the saturated regression (Supplementary Figure S7b)

the proportion score for PGR also reached significance (p = 0.024). The only other

marker to reach significance was an intensity score for GATA3 (p = 0.040); we expect

this is a spurious result arising from overfitting due to use of the saturated model. The

fact that AURKA and PDCD4 both received p-values greater than 0.05 is likely reflective

of the increase in power using sparse models under SBWR and LASSO.

Finally, we repeated the SBWR and CPSS analyses of SEARCH, extending to the

complete set of 119 tumour markers, i.e. including tumour markers for which more than

50% of values were imputed. Inference was unchanged for the previously analysed 75

tumour markers, and there was no compelling evidence for any of the newly included

tumour markers (Supplementary Figure S9).

6 Discussion

As large data-rich studies become common place in medical research, there is a grow-

ing need for regression tools which can facilitate variable selection over many predictors.
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Attractive features of developing solutions in the Bayesian sparse regression framework

include adequate reflection of uncertainty in the selection of covariates through infer-

ence of posterior probabilities for each predictor and possible model and, perhaps most

importantly, that prior information can potentially be naturally incorporated through

additional modelling of ω in the spirit of Quintana and Conti for the linear model[59].

We present, to our knowledge, the first implementation of a Bayesian variable selection

algorithm for survival analysis under the Weibull model.

Over a range of realistic simulation scenarios our method generally demonstrated sim-

ilar performance, and at times a marginal improvement in specificity, in comparison to

an alternative frequentist strategy — penalised Cox regression with stability selection

to generate measures of evidence for each covariate (specifically Complementary Pairs

Stability selection[12]). Our simulation study also demonstrated that the current imple-

mentation of our method can cope with high-dimensional data up to 20,000 predictors,

with computational times similar to the stability selection based approach (approximately

one day for n=2,287 on an Intel Xeon E5-2640 2.50GHz processor).

Subsequently, we conducted a real data application in which 119 prospectively mea-

sured immunohistochemical tumour markers were explored for their association with

survival among 2,287 ER positive breast cancer cases. Three proteins stood out with

evidence of independent effects; PDCD4, PGR and AURKA. Discrimination, i.e. separa-

tion between the top signals and other tumour markers, was clearer when using SBWR

in comparison to CPSS, consistently with the specificity improvements observed in some

of the simulation scenarios. We also compared our results with those from a univari-

ate strategy that might typically be used to analyse such data, highlighting some of the

benefits of multivariate modelling.

Of the top three proteins, two are becoming increasingly recognised as powerful prog-

nostic factors in ER-positive breast cancer. Indeed most schemes for clinical classification

of subgroups of breast tumours based on molecular profiles include PGR[43, 60, 61] and,

more recently, by using PGR expression at a higher threshold it has been proposed that
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it ought to be used to identify indolent ER-positive ‘luminal A’ tumours in the clini-

cal setting[62]. Following numerous high-resolution molecular profiling studies over the

past decade, tumour cell proliferation has been confirmed as the most powerful predic-

tor of outcome in ER-positive tumours[63, 64]. There are potentially dozens of methods

for measuring tumour cell proliferation including assaying different molecular markers of

cell cycle. We have previously conducted a systematic comparison of the relative prog-

nostic power of a panel of six proteins associated with cell-cycle including AURKA[65].

This study, based on the SEARCH dataset, identified AURKA as most strongly asso-

ciated with outcome, outperforming the other investigated markers including marker-

combinations[65]. Moreover, at the level of mRNA, AURKA has been identified as a

prototypical marker of proliferation and selected for optimal classification of breast tu-

mours into distinct molecular subgroups[66]. PDCD4 has not been investigated as a

potential prognostic marker in breast cancer previously. However studies in lung[67] and

salivary gland tumours[68] have shown an association with outcome. It is a well-known

tumour suppressor and thought to inhibit the translation of proteins by interacting with

eukaryotic translation factor 4A (eIF4A)[69]. The strong independent association be-

tween PDCD4 and outcome revealed by this analysis is a novel finding which highlights

PDCD4 as a potentially useful clinical marker of outcome requiring further evaluation.

Interpretation of these results should, however, be mindful of the estimated false discov-

ery rate, 19%, suggesting that up to one of the three proteins is expected to be a false

positive.

A further caveat to our real data application is that our treatment of missing data

may be sub-optimal. Missing data was imputed using the well established technique of

multiple imputation using chained equations[51], after which posteriors were pooled from

individual analyses of 20 chains as suggested by Gelman et al.[53]. However, after a

simulation study on the practical performance of this approach, Zhou and Reiter con-

cluded that 100 or more chains should be used to achieve adequate coverage of the target

posterior[70]. We did not do so here due to the computational time required to run our
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algorithm that many times, and since sensitivity analyses using less chains showed no

substantive difference in estimates and inference. We also note that, while it was advis-

able for penalised regression, and our approach due to the prior framework, in general

one should be very careful normalising predictors by their standard deviation[71]. In our

case, however, none of the top three markers had extreme standard deviations prior to

normalisation (ranging from 0.85 to 1.72), so our key results should not be meaningfully

impacted by this issue.

Although our algorithm was technically challenging to develop, since both models and

parameters are sampled during Reversible Jump MCMC, the framework used for variable

selection is relatively simplistic. First, we specified independent priors for all covariate

effects. Ideally, a multivariate normal prior would be used to reflect that correlated

covariates are likely to have correlated effects. Zellner proposed the use of ‘g-priors’

in which a multivariate normal is used as a prior for the regression coefficients with a

correlation structure informed by that of the covariate matrix[72]. In the context of

linear regression, g-priors also preserve the ability to use conjugate results for coefficient

effects and have been successfully implemented in the ESS sparse Bayesian regression

framework[28, 29, 30]. It is worth noting, however, that the SSS algorithm also uses

independent priors[27], and the use of independent priors in the work we present here

did not prove problematic. Nevertheless, we intend to incorporate a g-prior option in the

future. Second, the parametric assumptions imposed on the hazard function under the

Weibull model might be too restrictive for some problems. Haneuse et al. have proposed a

flexible Bayesian approach for capturing much more complex hazard functions, including

to account for potentially time varying predictor effects[73]. Future work could also

involve incorporating their ideas into our algorithm resulting in a considerably more

flexible tool for survival analysis.

Although the runtimes of our algorithm when applied to high-dimensional datasets of

20,000 covariates were similar to those from a state-of-the-art implementation of LASSO,

there is certainly room for improvement. An alternative strategy might be to avoid Re-
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versible Jump altogether, and induce sparsity via independent double-exponential Lapla-

cian priors on the Weibull covariate effects; a so-called ‘Bayesian LASSO’ model due to

demonstrated similarity of results with the LASSO[74]. This would sacrifice the arguably

more natural prior setup of the beta-binomial which, for example, allows direct specifica-

tion of priors on the proportions of associated covariates. However, removing Reversible

Jump from the MCMC algorithm could considerably improve efficiency. Another way we

might improve the efficiency of our algorithm could be to employ Evolutionary Monte

Carlo scheme which has proved effective for exploring parameter spaces consisting of hun-

dreds of thousands of predictors[28, 30]. We plan to investigate both strategies in future

work.

Our method of variable selection is relevant both to breast cancer research and clinical

practice. Cancer research has been transformed by the introduction of high-throughput

technologies which enable scientists to interrogate all expressed genes in a tumour and,

more recently, the sequence of the entire cancer genome at single nucleotide resolution in

a single experiment[75]. This has led to a proliferation of large datasets comprising hun-

dreds to tens of thousands of molecular features. The emergence of such abundant data

poses a strategic problem for the cancer biologist: How best can a shortlist of molecules

of probable importance be distilled from such a multitude? One approach has been to

use a combination of biological knowledge and statistical inference[76]. However, an al-

ternative may be to use a legitimate end-point such as disease-specific-survival to infer

which of a set of molecules influences the clinical behaviour of a tumour and is, therefore,

likely to reflect its biological characteristics. Variable selection which accounts for the

relative contribution of each of a large number of predictors represents a powerful method

for identifying candidate molecules which warrant further biological investigation. Those

molecules which are confirmed by such work to play a key role in tumour progression

would represent lucrative targets for novel therapies.

Accurate risk prediction in breast cancer is important since many therapies have a

modest effect on mortality and the absolute benefit of such toxic therapies is dependent
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on absolute risk of relapse or death[40]. Therefore even modest improvements in risk-

prediction can influence treatment decisions. Current clinical methods heavily rely on

conventional clinical parameters to estimate risk such as tumour size and grade, which

are already measured rigorously and are not likely to be much improved[38]. However,

molecular characteristics of tumours are not much utilised and represent an important

avenue for improving our approach. The impact of abundant molecular data on clinical

practice has been facilitated by studies over the past decade which used frequentist ap-

proaches to compile risk-prediction signatures for certain clinical endpoints[77]. These

methods have had varying success and do not systematically account for the relative con-

tribution of different variables. Through systematic consideration of multivariate models

which account for the dependencies between covariates, our method of variable selection

is likely to highlight not only molecules of biological importance but also to improve cur-

rent risk-prediction methods. These benefits will extend to all common solid tumours in

addition to breast cancer.

In summary, we present a new implementation of a Reversible Jump MCMC algo-

rithm for Bayesian variable selection in survival analysis under the Weibull regression

model. We demonstrate equal, or marginally superior, sensitivity and specificity to an

alternative state-of-the-art approach over a range of realistic simulation scenarios with

up to 20,000 covariates. Finally, resulting from a real data application in which our

method demonstrated superior specificity over alternative approaches, we present evi-

dence for three possible prognostic tumour markers of breast cancer survival. Despite

the conceptual limitations listed above, in practice our software proved reliable, robust

and efficient across the range of analyses presented here. Furthermore, our current im-

plementation offers enormous flexibility for incorporation of prior information on effect

magnitudes (individual priors can be specified for every covariate), and on relative prob-

abilities of effect - the model space may be partitioned into as many components as

required, each with an individual prior on the expected number of effects. This could,

for example, be utilised to reflect that a subset of features lie in a known pathway for
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the disease being modelled. We have incorporated the algorithm, which was developed

in java, into a freely available and easy to use R package called ‘R2BGLiMS’. For down-

load and installation instructions, please look under ‘Other R packages’ on our software

page http://www.mrc-bsu.cam.ac.uk/software/, or, alternatively, direct download of

‘R2BGLiMS’ is available via github https://github.com/pjnewcombe/R2BGLiMS.
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Table 1: Comparison of methods in simulated data. The top part of the table presents
areas under the receiver operator characteristic curve (ROC AUCs) for detection of the
12 true effects among the variables analysed. Results are averaged over the analysis of
20 replicate datasets for each simulation scenario, with the standard deviation across
replicates included in brackets. The bottom part of the table presents mean selection
rates of each method under the null, over all covariates and all simulation replicates, with
the standard deviation included in brackets.

LASSO CPSS SBWR
ROC AUCs
119 covariates, ‘full size’ effects 0.92 (0.04) 0.99 (0.01) 0.99 (0.01)
119 covariates, ‘half size’ effects 0.86 (0.06) 0.93 (0.05) 0.97 (0.03)
10,000 covariates, ‘full size’ effects 0.99 (0.00) 1.00 (0.00) 1.00 (0.00)
10,000 covariates, ‘half size’ effects 0.95 (0.05) 0.95 (0.03) 0.99 (0.01)
20,000 covariates, ‘full size’ effects 0.92 (0.02) 0.95 (0.02) 0.96 (0.04)
20,000 covariates, ‘half size’ effects 0.72 (0.05) 0.78 (0.03) 0.82 (0.15)

Selection rates under the null
119 covariates 0.60 (0.49) 0.48 (0.32) 0.14 (0.25)
10,000 covariates 9.2E-4 (0.03) 6.9E-4 (5.0E-3) 1.6E-6 (2.1E-5)
20,000 covariates 0 (0) 1.8E-4 (1.8E-3) 0 (0)
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Table 2: Top 20 models from the SBWR analysis of the SEARCH dataset, inferred by
SBWR.

A
U
R
K
A

P

B
C
L
2 P

C
K
56

G
A
T
A
3 I

P
D
C
D
4 O

2

P
G
R

P

S
M
A
D
2 I

P
T
E
N

I
3

P
T
E
N

P
3

S
L
C
7A

5 P

C
D
8 P

Posterior Probability
• • • 4.5%

• • 2.5%
• • • • 2.0%
• • • • 1.3%
• • • • 1.2%

• • • 1.2%
• • • • 0.7%

• 0.6%
• • • 0.6%
• • • • 0.5%

• • • 0.5%
• • • 0.5%
• • • • • 0.5%

• • 0.4%
• • 0.4%
• • • • 0.4%

• • • 0.4%
• • • 0.3%

• • • • 0.3%
• • • • 0.3%
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Table 3: SBWR results, for the fixed effects and top tumour markers associated breast
cancer survival in SEARCH. †Modelled as ordinal continuous. ‡For the tumour markers,
these were calculated conditional on inclusion in the model. ∗Marginal Posterior Prob-
abilitiy of Inclusion in the model - may be interpreted as the posterior probability an
association exists with survival, adjusted for all other covariates in the model.

HR 95% CrI‡ MPPI∗ Imputed
Fixed parameters
Intercept -7.32 (-8.07, -6.63) 0%
log(beta) Hyperprior SD (σβ) 0.24 (0.12, 0.71) 0%
Weibull scale 1.74 (1.54, 1.96) 0%
Number Positive Nodes† 1.61 (1.45, 1.79) 8.4%
(0, 1, 2-4, 5-9, 10+)
Tumour Size, mm† 1.26 (1.09, 1.45) 3.8%
(<10, 10-19, 20-29, 30-49, 50+)
Tumour grade† 1.47 (1.14, 1.89) 10.5%
(Low, Intermediate, High)
Morphology - Ductular - - 0%
Morphology - Lobular 1.55 (1.10, 2.16) -
Morphology - Other 1.06 (0.64, 1.68) -
HER2 1.47 (0.97, 2.18) 10.8%
Detection by screening 0.79 (0.55, 1.11) 6.1%
Hormone therapy 2.20 (1.38, 3.86) <0.01%
Study entry delay, years 0.88 (0.79, 0.98) 0%

‘Top’ tumour markers
PGRP 0.86 (0.80, 0.93) 0.92 5.2%
PDCD4O2 0.75 (0.62, 0.89) 0.84 43.2%
AURKAP 1.30 (1.11, 1.51) 0.68 31.0%
CD8P 0.92 (0.85, 0.98) 0.30 32.9%
GATA3I 0.80 (0.68, 0.94) 0.30 41.6%
BCL2P 0.94 (0.90, 0.98) 0.26 9.0%
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Figure 1: Tumour marker correlation structure and missingness. a) A heatmap represent-
ing pairwise Pearson correlation statistics among the various IHC intensity score tumour
markers. b) A heatmap representing pairwise Pearson correlation statistics among the
various IHC proportion score tumour markers. c) Pearson correlation statistics between
IHC intensity and proportion scores for those tumour markers where both were measured.
d) Proportion of missing values for each tumour marker in the analysis population.

Figure 2: ROC analysis of simulation results. Performance of association measures from
CPSS and SBWR, and the LASSO selections when the penalty parameter is set to the
optimum under cross-validation, in distinguishing 12 signals from noise in datasets rang-
ing from 119 to 20,000 covariates. Panels a, c and e show results from datasets simulated
to have 12 ‘full size’ effects, and panels b, d and f under 12 ‘half size’ effects. Each ROC
curve is vertically averaged over the results from the analysis of 20 replicate datasets.

Figure 3: Association of tumour markers with breast cancer survival in the SEARCH
dataset. In all panels, each tumour marker is coloured according to its strongest pairwise
correlation with one of the three top hits — PDCD4, PGR and AURKA. a) Selection
probabilities from LASSO Cox regression with CPSS. b) SBWR posterior probabilities.
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Figure 2: ROC analysis of simulation results. Performance of association measures from CPSS and SBWR, 
and the LASSO selections when the penalty parameter is set to the optimum under cross-validation, in 

distinguishing 12 signals from noise in datasets ranging from 119 to 20,000 covariates. Panels a), c) and e) 

show results from datasets simulated to have 12 ‘full size’ effects, and panels b), d) and f) under 12 ‘half 
size’ effects. Each ROC curve is vertically averaged over the results from the analysis of 20 replicate 

datasets.  
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Figure 3: Association of tumour markers with breast cancer survival in the SEARCH dataset. In all panels, 
each tumour marker is coloured according to its strongest pairwise correlation with one of the three top hits 

- PDCD4, PGR and AURKA. a) Selection probabilities from LASSO Cox regression with CPSS. b) SBWR 

posterior probabilities.  
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1 Supplementary Methods

1.1 Reversible Jump moves within the model space

The set of models that the Reversible Jump algorithm was allowed to mix between was
defined by all possible combinations of tumour marker parameters being included or
excluded for each marker. Therefore, when NBio are included in the analysis, there is
a set of

∑m=NBio

m=0

(
NBio

m

)
possible models that the Reversible Jump algorithm may mix

between.
Determining the probability of a model move was a two stage process. First, the type

of move was determined from four possibilities: Adding a tumour marker HR, removing
a tumour marker HR, swapping the HR of one tumour marker for another, or a ‘null’
move where no change is made. An addition can only occur when there are < NBio HRs
present, a removal can only occur when there are >0 HRs present, and a swap can only
occur when there are >1 HRs present. Swap, addition and removal moves were given
a 1

6
probability each of happening, when available. The null move therefore had a 1

2

probability of happening when all other move types were available, although this was
increased by the probabilities assigned to other move types when they were unavailable.
Second, if an addition, removal or swap move was selected, the tumour markers to be
involved in the move were picked from the tumour markers available for the move (an
addition, for example, can only choose from tumour markers not currently included) with
equal probability.

In summary, the probability of a particular move within the model space is determined
by multiplying the probability of the move type and, with the exception of a ‘null’ move,
the probability of selecting the particular tumour marker(s) involved in the move.

1.2 Parameter Updates

We adopt a proposal mechanism that updates one parameter type each iteration of the
Reversible Jump algorithm. For each proposal made in the reversible jump algorithm
there are four types of parameters that may be updated:

• The intercept intercept α

• Tumour marker log-HRs β.

• Tumour marker prior precision hyperparameter σβ

• Weibull shape parameter k

The parameter type to update is chosen at random, with weighting equal to the number
of occurrences of the parameter type in the model under consideration.

Updating the intercept α and tumour marker HRs β

These are updated using a normal distribution centred on the current value (which may
be 0 in the case of an ‘addition’ move). As explained above, only one log-HR is ever
updated per iteration with the exception of a ‘swap’ move in which one log-HR is set to
0 while another has a new non-zero value proposed.
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Updating the prior hyper parameter σbeta and the Weibull shape parameter k

Since these parameters must always be positive, they are updated on the log-scale. This
is also performed using a normal distribution centred on the current (log) value.

Adaption of proposal distribution variances

Each of the four proposal distributions described above is assigned a specific variance
parameter. Small values result in a high number of proposals being accepted, since the
values are closer to the previously accepted current values. However, another consequence
is slower exploration of the posterior space such that the algorithm must be run for
longer to obtain a representative sample. Therefore, in choosing the proposal variances
it is important to find a balance between a reasonable acceptance rate of proposals and
efficiency in traversing the posterior space. Each of the four variances are tuned during
an initial 100,000 iteration adaption stage to target an acceptance rate of approximately
0.4 for each parameter type.

1.3 False Discovery Rates

To determine the statistical significance of the posterior probabilities of association for
a covariate g, pg, we calculated the ‘Bayesian FDR’ — first defined by Newton et al.[1],
and further developed by Muller et al.[2] — for which there are several examples of
successful application to real datasets[3, 4, 5]. Briefly, for a threshold pcut on the posterior
probabilities of association pg, an empirical estimate of the FDR is given by:

1−
∑

g|pg≥pcut
pg

npcut

where npcut is the number of variables with posterior probabilities above pcut. Therefore,
this is simply one minus the average posterior probability among variables which reach
the threshold.
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[3] P. Broët, A. Lewin, S. Richardson, C. Dalmasso, and H. Magdelenat. A mixture
model-based strategy for selecting sets of genes in multiclass response microarray
experiments. Bioinformatics, 20(16):2562–71, 2004.

3

Page 53 of 65

http://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[4] A. Lewin, S. Richardson, C. Marshall, A. Glazier, and T. Aitman. Bayesian modeling
of differential gene expression. Biometrics, 62(1):1–9, 2006.

[5] A. Lewin, N. Bochkina, and S. Richardson. Fully Bayesian mixture model for differ-
ential gene expression: simulations and model checks. Stat. Appl. Genet. Mol. Biol.,
6(1):Article36, 2007.

4

Page 54 of 65

http://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 Supplementary Tables

5

Page 55 of 65

http://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Table S1: Comparison of effect estimates for the fixed effects with and without tumour
marker adjustment. The left two columns show results from running our SBWR algorithm
on the SEARCH dataset with all covariates in the table fixed to be included, but the
tumour markers excluded. The right two columns show results from the main SBWR
analysis of SEARCH, in which the covariates in this table were fixed to be included, while
simultaneously performing model selection over 75 tumour markers. Posterior results
were pooled from individual analyses of 20 multiply imputed datasets, as described in
the methods. †Modelled as ordinal continuous.

Without tumour markers With tumour markers
HR 95% CrI HR 95% CrI

Number Positive Nodes† 1.62 (1.44, 1.82) 1.60 (1.42, 1.80)
(0, 1, 2-4, 5-9, 10+)
Tumour Size, mm† 1.21 (1.05, 1.39) 1.22 (1.06, 1.40)
(<10, 10-19, 20-29, 30-49, 50+)
Tumour grade† 1.52 (1.30, 1.77) 1.32 (1.11, 1.58)
(Low, Intermediate, High)
Metastasis 4.06 (1.94, 7.69) 3.39 (1.55, 7.04)
Morphology - Ductular - - - -
Morphology - Lobular 1.37 (0.98, 1.88) 1.49 (1.05, 2.08)
Morphology - Other 0.93 (0.56, 1.49) 1.02 (0.61, 1.62)
HER2 1.61 (1.07, 2.32) 1.42 (0.93, 2.11)
Detection by screening 0.84 (0.59, 1.17) 0.80 (0.56, 1.14)
Hormone therapy 2.05 (1.29, 3.52) 2.17 (1.33, 3.80)
Study entry delay, years 0.87 (0.75, 0.99) 0.86 (0.74, 0.98)
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3 Supplementary Figures
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Figure S1: Posterior distribution of model size, i.e. number of included tumour markers,
from the SBWR analysis of SEARCH.
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Figure S2: Trace plot of selection indicators provided by the SBWR analysis among
predictor selections from the analysis of SEARCH. Predictors are ordered horizontally,
and posterior samples from SBWR are ordered vertically from bottom to top. For each
predictor, inclusion at the particular iteration is denoted in black, and exclusion is denoted
in white. This plot helps to visualise the mixing patterns of the selection indicators and
if variables seem to ‘stick’, i.e. do not come in and out in a fairly regular manner.

9

Page 59 of 65

http://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure S3: SBWR posterior chain plots from the analysis of SEARCH for a) the log-
likelihood, b) the intercept α , c) the Weibull scale k, d) log(Beta) Hyperprior SD (σβ)
and the top three tumour markers e) - g).
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Figure S4: Sensitivity analyses of SBWR applied to the SEARCH data, for different
choices of aω and aω in the Beta-binomial model space prior.
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Figure S5: Comparison of SBWR posterior results from two different MCMC chains.
Panel a) shows the difference in posterior probabilities inferred for each of the tumour
markers between the chains. Panel b) Shows the difference between chains in median
log-HR estimates for the fixed covariates, and for the tumour markers with posterior
probabilities at least 25%. For the tumour markers, median log-HRs were calculated
conditional on inclusion in the model.
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Figure S6: Exploration of sensitivity of SEARCH analysis results to imputation. For
each of the top three tumour markers, the top box and interval represent the median
Hazard Ratio and Credible Interval from the main SBWR analysis, in which 20 multiply
imputed datasets were analysed. The lower box and interval represent results from SBWR
univariate analyses in which imputed values were excluded for the particular tumour
marker. These latter analyses were univariate since only a small number of patients
had values observed for all three tumour markers simultaneously. These particular three
tumour markers do not have strong correlations so univariate point estimates should be
comparable to multivariate point estimates. The large overlap in the pairs of credible
intervals for each tumour marker suggest the multiply imputed data is reasonable. It is
to be expected that the point estimates from the analysis of imputed data shift slightly
to the null. Evidence of association is generally weaker among imputed values due to the
uncertainty associated with them. Therefore their incorporation into an analysis leads to
some deterioration of the effect estimates.
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Figure S7: Results from standard Weibull regressions of the SEARCH data, in which
p-values are combined across multiple imputation chains using Rubin’s rules. The top
panel displays univariate p-values of each tumour marker, and the bottom panel displays
adjusted p-values in which the saturated model was fitted to the data from each multiple
imputation chain.
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For Peer ReviewFigure S8: Association of tumour markers with breast cancer survival in the SEARCH
dataset. All 119 tumour markers were included in these analyses. In both panels, each
tumour marker is coloured according to its strongest pairwise correlation with one of the
three top hits — PDCD4, PGR and AURKA. a) Selection probabilities from LASSO Cox
regression with CPSS. b) SBWR posterior probabilities.
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