3,355 research outputs found

    A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials

    Get PDF
    We present an inverse method to identify the spatially varying stiffness distributions in 3 dimensions. The method is an extension of the classical Virtual Fields Method—a numerical technique that exploits information from full-field deformation measurements to deduce unknown material properties—in the spatial frequency domain, which we name the Fourier-series-based virtual fields method (F-VFM). Three-dimensional stiffness distributions, parameterised by a Fourier series expansion, are recovered after a single matrix inversion. A numerically efficient version of the technique is developed, based on the Fast Fourier Transform. The proposed F-VFM is also adapted to deal with the challenging situation of limited or even non-existent knowledge of boundary conditions. The three-dimensional F-VFM is validated with both numerical and experimental data. The latter came from a phase contrast magnetic resonance imaging experiment containing material with Poisson's ratio close to 0.5; such a case requires a slightly different interpretation of the F-VFM equations, to enable the application of the technique to incompressible materials

    Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: Comparison between hollow fiber and flat sheet membrane systems

    Full text link
    © 2017 Elsevier Ltd Hollow fiber (HF) and flat sheet (FS) Sponge MBRs were operated at 10–20 LMH flux treating hospital wastewater. Simultaneous nitrification denitrification (SND) occurred considerably with TN removal rate of 0.011–0.020 mg TN mg VSS−1 d−1. Furthermore, there was a remarkable removal of antibiotics in both Sponge MBRs, namely Norfloxacin (93–99% (FS); 62–86% (HF)), Ofloxacin (73–93% (FS); 68–93% (HF)), Ciprofloxacin (76–93% (FS); 54–70% (HF)), Tetracycline (approximately 100% for both FS and HF) and Trimethoprim (60–97% (FS); 47–93% (HF). Whereas there was a quite high removal efficiency of Erythromycin in Sponge MBRs, with 67–78% (FS) and 22–48% (HF). Moreover, a slightly higher removal of antibiotics in FS than in HF achieved, with the removal rate being of 0.67–32.40 and 0.44–30.42 µg mg VSS−1 d−1, respectively. In addition, a significant reduction of membrane fouling of 2–50 times was achieved in HF-Sponge MBR for the flux range

    Performance and membrane fouling of two types of laboratory-scale submerged membrane bioreactors for hospital wastewater treatment at low flux condition

    Full text link
    © 2016 Elsevier B.V. All rights reserved. The performance and membrane fouling of a lab-scale submerged sponge-membrane bioreactor (Sponge-MBR) and a conventional MBR were investigated and compared for hospital wastewater treatment at low fluxes of 2-6 LMH. COD removal by the Sponge-MBR was similar to that of the MBR, while the Sponge-MBR achieved 9-16% removed more total nitrogen than the MBR. This was due to 60% of total biomass being entrapped in the sponges, which enhanced simultaneous nitrification denitrification. Additionally, the fouling rates of the Sponge-MBR were 11-, 6.2- and 3.8-times less than those of the MBR at flux rates of 2, 4 and 6 LMH, respectively. It indicates the addition of sponge media into a MBR could effectively reduce the fouling caused by cake formation and absorption of soluble substances in a low flux scenario

    Wastewater treatment and biomass growth of eight plants for shallow bed wetland roofs

    Full text link
    © 2017 Elsevier Ltd Wetland roof (WR) could bring many advantages for tropical cities such as thermal benefits, flood control, green coverage and domestic wastewater treatment. This study investigates wastewater treatment and biomass growth of eight local plants in shallow bed WRs. Results showed that removal rates of WRs were 21–28 kg COD ha−1 day−1, 9–13 kg TN ha−1 day−1 and 0.5–0.9 kg TP ha−1 day−1, respectively. The plants generated more biomass at lower hydraulic loading rate (HLR). Dry biomass growth was 0.4–28.1 g day−1 for average HLR of 247–403 m3 ha−1 day−1. Green leaf area of the plants was ranging as high as 67–99 m2 leaves per m2 of WR. In general, the descent order of Kyllinga brevifoliaRottb (WR8), Cyperus javanicus Houtt (WR5) and Imperata cylindrical (WR4) was suggested as effective vegetations in WR conditions in terms of wastewater treatment, dry biomass growth and green coverage ratio

    A mini-review on the impacts of climate change on wastewater reclamation and reuse

    Full text link
    © 2014 Elsevier B.V. To tackle current water insecurity concerns, wastewater reclamation and reuse have appeared as a promising candidate to conserve the valuable fresh water sources while increasing the efficiency of material utilization. Climate change, nevertheless, poses both opportunities and threats to the wastewater reclamation industry. Whereas it elevates the social perception on water-related issues and fosters an emerging water-reuse market, climate change simultaneously presents adverse impacts on the water reclamation scheme, either directly or indirectly. These effects were studied fragmentally in separate realms. Hence, this paper aims to link these studies for providing a thorough understanding about the consequences of the climate change on the wastewater reclamation and reuse. It initially summarizes contemporary treatment processes and their reuse purposes before carrying out a systematic analysis of available findings

    Detection and monitoring of cancers with biosensors in Vietnam

    Get PDF
    Biosensors are able to provide fast, accurate and reliable detec-tions and monitoring of cancer cells, as well as to determine the effectiveness of anticancer chemotherapy agents in cancer treatments. These have attracted a great attention of research communities, especially in the capabilities of detecting the path-ogens, viruses and cancer cells in narrow scale that the conven-tional apparatus and techniques do not have. This paper pre-sents technologies and applications of biosensors for detections of cancer cells and related diseases, with the focus on the cur-rent research and technology development about biosensors in Vietnam, a typical developing country with a very high number of patients diagnosed with cancers in recent years, but having a very low cancer survival rate. The role of biosensors in early detections of diseases, cancer screening, diagnosis and treat-ment, is more and more important; especially it is estimated that by 2020, 60-70% new cases of cancers and nearly 70% of cancer deaths will be in economically disadvantaged countries. The paper is also aimed to open channels for the potential R&D collaborations with partners in Vietnam in the areas of innovative design and development of biosensors in particular and medical technology devices in general

    Fourier-series-based Virtual Fields Method for the identification of 2-D stiffness distributions

    Get PDF
    The Virtual Fields Method (VFM) is a powerful technique for the calculation of spatial distributions of material properties from experimentally-determined displacement fields. A Fourier-series-based extension to the VFM (the F-VFM) is presented here, in which the unknown stiffness distribution is parameterised in the spatial frequency domain rather than in the spatial domain as used in the classical VFM. We summarise here the theory of the F-VFM for the case of elastic isotropic thin structures with known boundary conditions. An efficient numerical algorithm based on the 2-D Fast Fourier Transform reduces the computation time by 3-4 orders of magnitude compared to a direct implementation of the F-VFM for typical experimental dataset sizes. Reconstruction of stiffness distributions with the FVFM has been validated on several stiffness distribution scenarios, one of which is presented here, in which a difference of about 0.5% was achieved between the reference and recovered stiffness distributions

    A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials

    Get PDF
    This is the peer reviewed version of the following article: Nguyen, TT and Huntley, JM and Ashcroft, IA and Ruiz, PD and Pierron, F (2017) A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials. Strain, 53 (5). e12229-e12229 which has been published in final form at 10.1111/str.12229 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." We present an inverse method to identify the spatially varying stiffness distributions in 3 dimensions. The method is an extension of the classical Virtual Fields Method—a numerical technique that exploits information from full-field deformation measurements to deduce unknown material properties—in the spatial frequency domain, which we name the Fourier-series-based virtual fields method (F-VFM). Three-dimensional stiffness distributions, parameterised by a Fourier series expansion, are recovered after a single matrix inversion. A numerically efficient version of the technique is developed, based on the Fast Fourier Transform. The proposed F-VFM is also adapted to deal with the challenging situation of limited or even non-existent knowledge of boundary conditions. The three-dimensional F-VFM is validated with both numerical and experimental data. The latter came from a phase contrast magnetic resonance imaging experiment containing material with Poisson's ratio close to 0.5; such a case requires a slightly different interpretation of the F-VFM equations, to enable the application of the technique to incompressible materials

    A Fourier-series-based Virtual Fields Method for the Identification of 2-D Stiffness and Traction Distributions

    Get PDF
    The virtual fields method (VFM) allows spatial distributions of material properties to be calculated from experimentally determined strain fields. A numerically efficient Fourier-series-based extension to the VFM (the F-VFM) has recently been developed, in which the unknown stiffness distribution is parameterised in the spatial frequency domain rather than in the spatial domain as used in the classical VFM. However, the boundary conditions for the F-VFM are assumed to be well-defined, whereas in practice, the traction distributions on the perimeter of the region of interest are rarely known to any degree of accuracy. In the current paper, we therefore consider how the F-VFM theory can be extended to deal with the case of unknown boundary conditions. Three different approaches are proposed; their ability to reconstruct normalised stiffness distributions and traction distributions around the perimeter from noisy input strain fields is assessed through simulations based on a forward finite element analysis. Finally, a practical example is given involving experimental strain fields from a diametral compression test on an aluminium disc
    • …
    corecore