1,075 research outputs found

    Dental plaque as a biofilm and a microbial community – implications for health and disease

    Get PDF
    Dental plaque is a structurally- and functionally-organized biofilm. Plaque forms in an ordered way and has a diverse microbial composition that, in health, remains relatively stable over time (microbial homeostasis). The predominant species from diseased sites are different from those found in healthy sites, although the putative pathogens can often be detected in low numbers at normal sites. In dental caries, there is a shift toward community dominance by acidogenic and acid-tolerating species such as mutans streptococci and lactobacilli, although other species with relevant traits may be involved. Strategies to control caries could include inhibition of biofilm development (e.g. prevention of attachment of cariogenic bacteria, manipulation of cell signaling mechanisms, delivery of effective antimicrobials, etc.), or enhancement of the host defenses. Additionally, these more conventional approaches could be augmented by interference with the factors that enable the cariogenic bacteria to escape from the normal homeostatic mechanisms that restrict their growth in plaque and out compete the organisms associated with health. Evidence suggests that regular conditions of low pH in plaque select for mutans streptococci and lactobacilli. Therefore, the suppression of sugar catabolism and acid production by the use of metabolic inhibitors and non-fermentable artificial sweeteners in snacks, or the stimulation of saliva flow, could assist in the maintenance of homeostasis in plaque. Arguments will be presented that an appreciation of ecological principles will enable a more holistic approach to be taken in caries control

    Non-lethal control of the cariogenic potential of an agent-based model for dental plaque

    Get PDF
    Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments

    Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics

    Get PDF
    Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health, and provide benefits to the host. However, this relationship can break down, and disease can occur; disease is associated with a shift in the balance of the species within these biofilms. Simple diagnostic tests have been developed that involve the culture of selected bacteria, eg, those implicated in dental caries, facilitating an assessment of risk of further disease in individual patients. However, oral diseases have a complex etiology, and because only around 50% of oral biofilm can be grown at present, culture-independent molecular-based approaches are being developed that give a more comprehensive assessment of the presence of a range of putative pathogens in samples. The diversity of these biofilms creates challenges in the interpretation of findings, and future work is investigating the ability of novel techniques to detect biological activity and function in oral biofilms, rather than simply providing a catalogue of microbial names

    Ecological Therapeutic Opportunities for Oral Diseases

    Get PDF
    The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis

    Prospects of oral disease control in the future - an opinion

    Get PDF
    The mouth supports a diverse microbiota which provides major benefits to the host. On occasions, this symbiotic relationship breaks down (dysbiosis), and disease can be a consequence. We argue that progress in the control of oral diseases will depend on a paradigm shift away from approaches that have proved successful in medicine for many diseases with a specific microbial aetiology. Factors that drive dysbiosis in the mouth should be identified and, where possible, negated, reduced or removed, while antimicrobial agents delivered by oral care products may function effectively, even at sub-lethal concentrations, by modulating the activity and growth of potentially pathogenic bacteria. In this way, the beneficial activities of the resident oral microbiota will be retained and the risk of dysbiosis occurring will be reduced

    In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries

    Get PDF
    Dental caries is the most prevalent infection globally and a substantial economic burden in developed countries. Dietary sugars are the main risk factor, and drive increased proportions of acid-producing and acid-tolerating (aciduric) bacterial species within dental bio lms. Recent longitudinal studies have suggested that caries is most strongly correlated with total sugar intake, contrasting with the prevailing view that intake frequency is the primary determinant. To explore this possibility, we employed a computational model for supragingival plaque to systematically sample combinations of sugar frequency and total amount, allowing their independent contributions on the ratio of aciduric (i.e. cariogenic) to non-aciduric bacteria to be unambiguously determined. Sugar frequency was found to be irrelevant for either very high or very low daily total amounts as the simulated bio lm was predicted to be always or never cariogenic, respectively. Frequency was a determining factor for intermediate total amounts of sugar, including the estimated average human consumption. An increased risk of caries (i.e. high prevalence of aciduric/non-aciduric species) was predicted for high intake frequencies. Thus, both total amount and frequency of sugar intake may combine to in uence plaque cariogenicity. These ndings could be employed to support public guidance for dietary change, leading to improved oral healthcare

    In silico modelling of hyposalivation and biofilm dysbiosis in root caries

    Get PDF
    Root caries progression is aggravated by hyposalivation, which can accelerate the conversion of a dental biofilm from having a symbiotic microbial relationship with the host (predominance of nonaciduric species) to a dysbiotic one (dominated by aciduric species). Using a mathematical model previously employed to investigate factors associated with biofilm dysbiosis, we systematically explored the deleterious effect of hyposalivation on the composition of the biofilm and the risk of root dentin demineralization. By varying the clearance half-times of sugar (i.e., readily fermented dietary carbohydrates), we simulated hyposalivation and investigated its effect on 1) the time that the biofilm pH spends below the minimum for dentin or enamel demineralization and 2) the conversion of the biofilm from a symbiotic to dysbiotic composition. The effect of increasing sugar clearance half-times on the time that the biofilm pH is below the threshold for demineralization was more pronounced for dentin than for enamel (e.g., increasing the clearance half-time from 2 to 6 min doubled the time that the biofilm pH was below the threshold for dentin demineralization). The effect on biofilm composition assessed at 50 d showed that the conversion from a symbiotic to a dysbiotic biofilm happened around a frequency of 6 sugar intakes per day when the clearance half-time was 2 min but only 3 sugar intakes per day when the clearance half-time was 6 min. Taken together, the results confirm the profound effect that prolonged sugar clearance has on the dynamics of dental biofilm composition and the subsequent risk of root caries. This in silico model should be applied to study how interventions that alter salivary clearance rates or modify biofilm pH can affect clinical conditions such as root caries

    Enrichment of periodontal pathogens from the biofilms of healthy adults

    Get PDF
    Periodontitis is associated with shifts in the balance of the subgingival microbiome. Many species that predominate in disease have not been isolated from healthy sites, raising questions as to the origin of these putative pathogens. The study aim was to determine whether periodontal pathogens could be enriched from pooled saliva, plaque and tongue samples from dentally-healthy adult volunteers using growth media that simulate nutritional aspects of the inflamed subgingival environment. The microbiome was characterised before and after enrichment using established metagenomic approaches, and the data analysed bioinformatically to identify major functional changes. After three weeks, there was a shift from an inoculum in which Streptococcus, Haemophilus, Neisseria, Veillonella and Prevotella species predominated to biofilms comprising an increased abundance of taxa implicated in periodontitis, including Porphyromonas gingivalis, Fretibacterium fastidiosum, Filifactor alocis, Tannerella forsythia, and several Peptostreptococcus and Treponema spp., with concomitant decreases in health-associated species. Sixty-four species were present after enrichment that were undetectable in the inoculum, including Jonquetella anthropi, Desulfovibrio desulfuricans and Dialister invisus. These studies support the Ecological Plaque Hypothesis, providing evidence that putative periodontopathogens are present in health at low levels, but changes to the subgingival nutritional environment increase their competitiveness and drive deleterious changes to biofilm composition

    Hemin availability induces coordinated DNA methylation and gene expression changes in Porphyromonas gingivalis.

    Get PDF
    Periodontal disease is a chronic inflammatory disease in which the oral pathogen Porphyromonas gingivalis plays an important role. Porphyromonas gingivalis expresses virulence determinants in response to higher hemin concentrations, but the underlying regulatory processes remain unclear. Bacterial DNA methylation has the potential to fulfil this mechanistic role. We characterized the methylome of P. gingivalis, and compared its variation to transcriptome changes in response to hemin availability. Porphyromonas gingivalis W50 was grown in chemostat continuous culture with excess or limited hemin, prior to whole-methylome and transcriptome profiling using Nanopore and Illumina RNA-Seq. DNA methylation was quantified for Dam/Dcm motifs and all-context N6-methyladenine (6mA) and 5-methylcytosine (5mC). Of all 1,992 genes analyzed, 161 and 268 were respectively over- and under-expressed with excess hemin. Notably, we detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin availability. Joint analyses identified a subset of coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify altered methylation and expression responses to hemin availability in P. gingivalis, with insights into mechanisms regulating its virulence in periodontal disease. IMPORTANCE DNA methylation has important roles in bacteria, including in the regulation of transcription. Porphyromonas gingivalis, an oral pathogen in periodontitis, exhibits well-established gene expression changes in response to hemin availability. However, the regulatory processes underlying these effects remain unknown. We profiled the novel P. gingivalis epigenome, and assessed epigenetic and transcriptome variation under limited and excess hemin conditions. As expected, multiple gene expression changes were detected in response to limited and excess hemin that reflect health and disease, respectively. Notably, we also detected differential DNA methylation signatures for the Dam "GATC" motif and both all-context 6mA and 5mC in response to hemin. Joint analyses identified coordinated changes in gene expression, 6mA, and 5mC methylation that target genes involved in lactate utilization and ABC transporters. The results identify novel regulatory processes underlying the mechanism of hemin regulated gene expression in P. gingivalis, with phenotypic impacts on its virulence in periodontal disease

    Small bowel adenocarcinoma in a patient with Coeliac disease: A case report

    Get PDF
    Coeliac disease is a chronic inflammatory disease of the gut with increased risk of gastrointestinal malignancy. Although enteropathy T-lymphoma is the most common neoplasm in patient affected by coeliac disease, an increased frequency of small bowel carcinoma has been described. We present a case of jejunal carcinoma in a patient suffering for coeliac disease in which gastrointestinal and extraintestinal symptoms of disease developed although he was treated with a gluten-free diet
    • …
    corecore