227 research outputs found

    Posterior transdural discectomy: a new approach for the removal of a central thoracic disc herniation

    Get PDF
    BACKGROUND: The optimal surgical approach for thoracic disc herniation remains a matter of debate, especially for central disc herniation. In this paper, we present a new technique to remove central thoracic disc herniation, the posterior transdural approach, and report a series of 13 cases operated on in this way at our institute. METHODS: Between September 2004 and October 2010, 13 patients with symptomatic central thoracic disc herniation were operated on, utilising this posterior transdural approach. All patients underwent magnetic resonance imaging (MRI) of the thoracic spine before surgery. All patients were followed at our outpatient department for at least 3 months. In addition, all patients were interviewed in April 2009 and February 2011 to evaluate the final results. A seven-point Likert scale was applied and the Frankel score was determined preoperatively and postoperatively. Additionally, a postoperative MRI was obtained for all but two patients. RESULTS: The most frequently involved levels were T10-11 and T12-L1. Median operative time was 210 min (range 140-360). Three patients experienced reversible complications. No patient required spinal fixation. The median duration of hospitalisation was 6 days (range 4-20 days). With a median follow-up of 18 months, symptoms improved in 12 patients (92%), including the three patients with complications. One patient was unchanged (8%), while none of the patients experienced worsening of symptoms. CONCLUSIONS: The posterior transdural approach is well tolerated by the patient and has a relatively high success rate. It is a relatively simple and safe procedure, suitable for the operative treatment of almost all types of thoracic disc herniation, but especially the centrally located disc herniation

    Home visits by neighborhood Mentor Mothers provide timely recovery from childhood malnutrition in South Africa: results from a randomized controlled trial

    Get PDF
    Abstract Background Child and infant malnourishment is a significant and growing problem in the developing world. Malnourished children are at high risk for negative health outcomes over their lifespans. Philani, a paraprofessional home visiting program, was developed to improve childhood nourishment. The objective of this study is to evaluate whether the Philani program can rehabilitate malnourished children in a timely manner. Methods Mentor Mothers were trained to conduct home visits. Mentor Mothers went from house to house in assigned neighborhoods, weighed children age 5 and younger, and recruited mother-child dyads where there was an underweight child. Participating dyads were assigned in a 2:1 random sequence to the Philani intervention condition (n = 536) or a control condition (n = 252). Mentor Mothers visited dyads in the intervention condition for one year, supporting mothers' problem-solving around nutrition. All children were weighed by Mentor Mothers at baseline and three, six, nine and twelve month follow-ups. Results By three months, children in the intervention condition were five times more likely to rehabilitate (reach a healthy weight for their ages) than children in the control condition. Throughout the course of the study, 43% (n = 233 of 536) of children in the intervention condition were rehabilitated while 31% (n = 78 of 252) of children in the control condition were rehabilitated. Conclusions Paraprofessional Mentor Mothers are an effective strategy for delivering home visiting programs by providing the knowledge and support necessary to change the behavior of families at risk

    Genes Important for Catalase Activity in Enterococcus faecalis

    Get PDF
    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly

    Defective Interfering Viral Particles in Acute Dengue Infections

    Get PDF
    While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3′ and 5′ ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6–36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses

    Search for the standard model Higgs boson at LEP

    Get PDF

    Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops

    Get PDF
    Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community

    FRAX™ and the assessment of fracture probability in men and women from the UK

    Get PDF
    SUMMARY: A fracture risk assessment tool (FRAX) is developed based on the use of clinical risk factors with or without bone mineral density tests applied to the UK. INTRODUCTION: The aim of this study was to apply an assessment tool for the prediction of fracture in men and women with the use of clinical risk factors (CRFs) for fracture with and without the use of femoral neck bone mineral density (BMD). The clinical risk factors, identified from previous meta-analyses, comprised body mass index (BMI, as a continuous variable), a prior history of fracture, a parental history of hip fracture, use of oral glucocorticoids, rheumatoid arthritis and other secondary causes of osteoporosis, current smoking, and alcohol intake 3 or more units daily. METHODS: Four models were constructed to compute fracture probabilities based on the epidemiology of fracture in the UK. The models comprised the ten-year probability of hip fracture, with and without femoral neck BMD, and the ten-year probability of a major osteoporotic fracture, with and without BMD. For each model fracture and death hazards were computed as continuous functions. RESULTS: Each clinical risk factor contributed to fracture probability. In the absence of BMD, hip fracture probability in women with a fixed BMI (25 kg/m(2)) ranged from 0.2% at the age of 50 years for women without CRF's to 22% at the age of 80 years with a parental history of hip fracture (approximately 100-fold range). In men, the probabilities were lower, as was the range (0.1 to 11% in the examples above). For a major osteoporotic fracture the probabilities ranged from 3.5% to 31% in women, and from 2.8% to 15% in men in the example above. The presence of one or more risk factors increased probabilities in an incremental manner. The differences in probabilities between men and women were comparable at any given T-score and age, except in the elderly where probabilities were higher in women than in men due to the higher mortality of the latter. CONCLUSION: The models provide a framework which enhances the assessment of fracture risk in both men and women by the integration of clinical risk factors alone and/or in combination with BMD
    corecore