38 research outputs found

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    <i>Klebsiella</i> phylogeny.

    No full text
    <p>Tree for 108 genomes based on a 2.93-Mbp alignment, rooted at the midpoint of the outgroup (Ecl/Yre) branch. Nodes with <30% bootstrap support were combined forming the multifurcated dashed line; otherwise support values are shown only when <100%. Brackets: Kpn multilocus sequence type (ST). Inset: enlargement of the “core Kpn” phylogeny. Kpn2146 falls in a clade containing fellow ST11 strains Kpn JM45 and Kpn HS11286 and a tight clade (circled) of ST258 and ST512 strains. The ST258/ST512 clade is heavily sequenced, and represented here with only five of its most diverse members. Bold: complete genomes used for phyloblocks analysis. Species name abbreviations: Kpn, <i>K. pneumoniae</i>; Ksp, <i>K. sp</i>.; Kpl, <i>K. cf. planticola</i>; Kox, <i>K. oxytoca</i>; Kva, <i>K. variicola</i>; Eae, <i>Enterobacter aerogenes</i>; Ecl, <i>E. cloacae</i>; Ror, <i>Raoultella ornithinolytica</i>; Yre, <i>Yokanella regensburgei</i>.</p

    Noble metal nanoparticle biosensors: from fundamental studies towards point-of-care diagnostics

    No full text
    Noble metal nanoparticles (NMNPs) have become firmly established as effective agents to detect various biomolecules with extremely high sensitivity. This ability stems from the collective oscillation of free electrons and extremely large electric field enhancement under exposure to light, leading to various light–matter interactions such as localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering. A remarkable feature of NMNPs is their customizability by mechanisms such as particle etching, growth, and aggregation/dispersion, yielding distinct color changes and excellent opportunities for colorimetric biosensing in user-friendly assays and devices. They are readily functionalized with a large variety of capping agents and biomolecules, with resultant bioconjugates often possessing excellent biocompatibility, which can be used to quantitatively detect analytes from physiological fluids. Furthermore, they can possess excellent catalytic properties that can achieve significant signal amplification through mechanisms such as the catalytic transformation of colorless substrates to colored reporters. The various excellent attributes of NMNP biosensors have put them in the spotlight for developing high-performance in vitro diagnostic (IVD) devices that are particularly well-suited to mitigate the societal threat that infectious diseases pose. This threat continues to dominate the global health care landscape, claiming millions of lives annually. NMNP IVDs possess the potential to sensitively detect infections even at very early stages with affordable and field-deployable devices, which will be key to strengthening infectious disease management. This has been the major focal point of current research, with a view to new avenues for early multiplexed detection of infectious diseases with portable devices such as smartphones, especially in resource-limited settings
    corecore