61 research outputs found

    Ace Lake: three decades of research on a meromictic, Antarctic lake

    Get PDF
    Ace Lake (Vestfold Hills, Antarctica) has been investigated since the 1970s. Its close proximity to Davis Station has allowed year-long, as well as summer only, investigations. Ace Lake is a saline meromictic (permanently stratified) lake with strong physical and chemical gradients. The lake is one of the most studied lakes in continental Antarctica. Here we review the current knowledge of the history, the physical and chemical environment, community structure and functional dynamics of the mixolimnion, littoral benthic algal mats, the lower anoxic monimolimnion and the sediment within the monimolimnion. In common with other continental meromictic Antarctic lakes, Ace Lake possesses a truncated food web dominated by prokaryote and eukaryote microorganisms in the upper aerobic mixolimnion, and an anaerobic prokaryote community in the monimolimnion, where methanogenic Archaea, sulphate-reducing and sulphur-oxidizing bacteria occur. These communities are functional in winter at subzero temperatures, when mixotrophy plays an important role in survival in dominant photosynthetic eukaryotic microorganisms in the mixolimnion. The productivity of Ace Lake is comparable to other saline lakes in the Vestfold Hills, but higher than that seen in the more southerly McMurdo Dry Valley lakes. Finally we identify gaps in the current knowledge and avenues that demand further investigation, including comparisons with analogous lakes in the North Polar region

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of ÎČ-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible ÎČ-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    Integrating the Genetic and Physical Maps of Arabidopsis thaliana: Identification of Mapped Alleles of Cloned Essential (EMB) Genes

    Get PDF
    The classical genetic map of Arabidopsis includes more than 130 genes with an embryo-defective (emb) mutant phenotype. Many of these essential genes remain to be cloned. Hundreds of additional EMB genes have been cloned and catalogued (www.seedgenes.org) but not mapped. To facilitate EMB gene identification and assess the current level of saturation, we updated the classical map, compared the physical and genetic locations of mapped loci, and performed allelism tests between mapped (but not cloned) and cloned (but not mapped) emb mutants with similar chromosome locations. Two hundred pairwise combinations of genes located on chromosomes 1 and 5 were tested and more than 1100 total crosses were screened. Sixteen of 51 mapped emb mutants examined were found to be disrupted in a known EMB gene. Alleles of a wide range of published EMB genes (YDA, GLA1, TIL1, AtASP38, AtDEK1, EMB506, DG1, OEP80) were discovered. Two EMS mutants isolated 30 years ago, T-DNA mutants with complex insertion sites, and a mutant with an atypical, embryo-specific phenotype were resolved. The frequency of allelism encountered was consistent with past estimates of 500 to 1000 EMB loci. New EMB genes identified among mapped T-DNA insertion mutants included CHC1, which is required for chromatin remodeling, and SHS1/AtBT1, which encodes a plastidial nucleotide transporter similar to the maize Brittle1 protein required for normal endosperm development. Two classical genetic markers (PY, ALB1) were identified based on similar map locations of known genes required for thiamine (THIC) and chlorophyll (PDE166) biosynthesis. The alignment of genetic and physical maps presented here should facilitate the continued analysis of essential genes in Arabidopsis and further characterization of a broad spectrum of mutant phenotypes in a model plant

    Calculation of the relative metastabilities of proteins using the CHNOSZ software package

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables.</p> <p>Results</p> <p>A software package called CHNOSZ implementing the revised Helgeson-Kirkham-Flowers (HKF) equations of state and group additivity for ionized unfolded aqueous proteins was developed. The program can be used to calculate standard molal Gibbs energies and other thermodynamic properties of reactions and to make chemical speciation and predominance diagrams that represent the metastable equilibrium distributions of proteins. The approach takes account of the chemical affinities of reactions in open systems characterized by the chemical potentials of basis species. The thermodynamic database included with the package permits application of the software to mineral and other inorganic systems as well as systems of proteins or other biomolecules.</p> <p>Conclusion</p> <p>Metastable equilibrium activity diagrams were generated for model cell-surface proteins from archaea and bacteria adapted to growth in environments that differ in temperature and chemical conditions. The predicted metastable equilibrium distributions of the proteins can be compared with the optimal growth temperatures of the organisms and with geochemical variables. The results suggest that a thermodynamic assessment of protein metastability may be useful for integrating bio- and geochemical observations.</p

    Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Get PDF
    BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment

    Archaic chaos: intrinsically disordered proteins in Archaea

    Get PDF
    Background: Many proteins or their regions known as intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack unique 3D structure in their native states under physiological conditions yet fulfill key biological functions. Earlier bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. Archaea belong to an intriguing domain of life whose members, being microbes, are characterized by a unique mosaic-like combination of bacterial and eukaryotic properties and include inhabitants of some of the most extreme environments on the planet. With the expansion of the archaea genome data (more than fifty archaea species from five different phyla are known now), and with recent improvements in the accuracy of intrinsic disorder prediction, it is time to re-examine the abundance of IDPs and IDRs in the archaea domain.Results: The abundance of IDPs and IDRs in 53 archaea species is analyzed. The amino acid composition profiles of these species are generally quite different from each other. The disordered content is highly species-dependent. Thermoproteales proteomes have 14% of disordered residues, while in Halobacteria, this value increases to 34%. In proteomes of these two phyla, proteins containing long disordered regions account for 12% and 46%, whereas 4% and 26% their proteins are wholly disordered. These three measures of disorder content are linearly correlated with each other at the genome level. There is a weak correlation between the environmental factors (such as salinity, pH and temperature of the habitats) and the abundance of intrinsic disorder in Archaea, with various environmental factors possessing different disorder-promoting strengths. Harsh environmental conditions, especially those combining several hostile factors, clearly favor increased disorder content. Intrinsic disorder is highly abundant in functional Pfam domains of the archaea origin. The analysis based on the disordered content and phylogenetic tree indicated diverse evolution of intrinsic disorder among various classes and species of Archaea.Conclusions: Archaea proteins are rich in intrinsic disorder. Some of these IDPs and IDRs likely evolve to help archaea to accommodate to their hostile habitats. Other archaean IDPs and IDRs possess crucial biological functions similar to those of the bacterial and eukaryotic IDPs/IDRs

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy

    Get PDF
    • 

    corecore