11 research outputs found

    Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study

    Get PDF
    The emerging industrial business partnerships, which feature cross-functional and cross-company development efforts, raise the barrier for the establishment of effective knowledge sharing practices in the larger organization. This chapter aims to highlight the role of knowledge as a key enabler for effective engineering activities in the light of such emerging enterprise collaboration models. Knowledge Enabled Engineering (KEE) is presented as an approach to enhance the extended organization’s capability to establish effective collaboration among its parts, in spite of different organizational structures, technologies or processes. KEE is analysed in its constituent parts, highlighting areas, methods and tools that are particularly interesting for leveraging companies’ knowledge sharing capabilities

    The effect of low temperature and low light intensity on nutrient removal from municipal wastewater by purple phototrophic bacteria (PPB)

    Get PDF
    There has been increased interest in alternative wastewater treatment systems to improve nutrient recovery while achieving acceptable TCOD, TN, and TP discharge limits. Purple phototrophic bacteria (PPB) have a high potential for simultaneous nutrient removal and recovery from wastewater. This study evaluated the PPB performance and its growth at different operating conditions with a focus on HRT and light optimization using a continuous-flow membrane photobioreactor (PHB). Furthermore, the effect of low temperature on PPB performance was assessed to evaluate the PPB’s application in cold-climate regions. In order to evaluate PPB performance, TCOD, TN, and TP removal efficiencies and Monod kinetic parameters were analyzed at different HRTs (36, 18, and 9 h), at temperatures of 22°C and 11°C and infrared (IR) light intensities of 50, 3, and 1.4 Wm-2. The results indicated that low temperature had no detrimental impact on PPB’s performance. The photobioreactor (PHB) with cold-enriched PPB has a high potential to treat municipal wastewater with effluent concentrations below target limits (TCOD˂ 50mgL-1, TN˂10 mgL-1, and TP˂1 mgL-1). Monod kinetic parameters Ks, K, Y, and Kd were estimated at 20-29 mgCODL-1, 1.6-1.9 mgCOD(mgVSS.d)-1, 0.47 mgVSS mgCOD-1, and 0.07-0.08 d-1 at temperatures of 11°C-22°C respectively. The results of the steady-state mass balances showed TCOD, TN, and TP recoveries of 80%-86%, which reflected PPB’s substrate and nutrient assimilation. Previous studies utilized high light intensities (˃ 50 Wm-2) to provide PPB with the maximum energy required for its growth. In order to enable the PPB technology as a practical approach in municipal wastewater treatment, light intensity must be optimized. Based on the literature, there is no study on PPB performance at low light intensities using a continuous-flow membrane photobioreactor. The effect of low light intensities of 3, and 1.4 Wm-2 on PPB performance was addressed in this study. The results indicated that PPB at a light intensity as low as 1.4 Wm-2 were able to treat municipal wastewater with effluent concentrations below above-mentioned target limits. Light intensity (1-50 Wm-2) had no detrimental impact on PPB performance and Monod kinetic parameters. This study showed that the optimized light intensity required for municipal wastewater treatment with PPB is significantly lower than previously indicated in the literature. The energy consumptions attributed to PHB’s illumination of 3, and 1.4 Wm-2 were determined to be 1.44, and 0.67 kWh/m3 which is significantly lower than previous studies (˃ 24 kWh/m3)

    Unveiling the intellectual origins of Social Media-based innovation: insights from a bibliometric approach

    No full text

    Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications

    No full text

    Die Antimykotica

    No full text
    corecore