22 research outputs found

    Thyroid Hormone Signalling Genes Are Regulated by Photoperiod in the Hypothalamus of F344 Rats

    Get PDF
    Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHβ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be investigated

    Photoperiod Regulates Lean Mass Accretion, but Not Adiposity, in Growing F344 Rats Fed a High Fat Diet

    Get PDF
    yesIn this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.Scottish Government (Rural and Environment Science and Analytical Services Division, http://www.scotland.gov.uk/), AWR LR LMT PJM and the BBSRC, (http://www.bbsrc.ac.uk/home/home.aspx, grant BB/K001043/1), AWR GH PJ

    Foetal psoriasis

    No full text

    Pendulous Crop in Broilers

    No full text
    ABSTRACTPendulous crop is a physiological disorder, which etiology is still unknown and it is characterized by abnormal dilation of the crop of poultry. This article aims at reporting a case of high incidence of pendulous crop in male and female broilers Cobb 500, as well as to discuss its possible causes and consequences. In an experiment with broilers performed at the experimental facilities of Laboratório de Ensino Zootécnico of UFRGS, a high incidence (9.5%) of pendulous crop was observed. Genetic predisposition is the most frequently documented and accepted cause of that condition. Despite presenting the same live weight as normal broilers, birds with pendulous crop had lower carcass weight due to dehydration and malnourishment, and should be culled after diagnosis. Therefore, further studies on the origin and control of this physiological disorder are warranted

    Effect of different dietary concentrations of Amino Acids on the performance of two different Broiler Strains

    No full text
    Four Nutritional Programs (NP) used in the Brazilian poultry industry were tested in two broiler strains (Cobb 500 and Ross 308). NP varied in the concentrations of their main essential amino acids (AA) and were classified as Low, Regular, High and Mixed (high AA concentrations up to 21 days and regular concentrations after that). Minimum digestible Met+Cys/Lys, Thr/Lys, Arg/Lys, Ile/Lys, and Val/Lys ratios were 0.74, 0.64, 1.05, 0.65 and 0.75, respectively, in all NP, and no minimum amount of CP was fixed. There were no interactions between strain and NP for any of the evaluated responses. From 1 to 47 days of age, birds fed the Low NP presented lower average body weight and body weight gain (BWG). The high NP allowed for better feed conversion ratio (FCR), followed by the Regular and the Mixed NP. Ross 308 broilers were heavier, presenting worse FCR due to higher FI. Birds fed the High NP had lower carcass yield than those fed the Low NP. The Low and Regular NP had lower costs per WG when compared with the High NP. Low and Regular NP presented higher gross margin returns compared with the High NP. The Regular and Mixed NP are the most recommended, presenting intermediate performance and higher economic returns

    The Hormonal Control of Hair Growth

    No full text
    corecore