22 research outputs found

    Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis

    No full text
    Hyojin Lee,1,* Chloe Kim,2,* Dongjin Lee,1,3,* Jea Ho Park,1,2 Peter C Searson,2 Kwan Hyi Lee1,3 1Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; 2Department of Materials Science and Engineering, 3Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: Recent studies have found that prostate cancer expresses abnormal genetic markers including multiple types of TMPRSS2–ERG fusion genes. The expression level of different TMPRSS2–ERG fusion genes is correlated to pathologic variables of aggressive prostate cancer and disease progression. State-of-the-art methods for detection of TMPRSS2–ERG fusion genes include reverse transcription polymerase chain reaction (RT-PCR) with a detection limit of 1 fmol at urinary condition. RT-PCR is time consuming, costly, and inapplicable for multiplexing. Ability to identify multiple fusion genes in a single sample has become important for diagnostic and clinical purposes. There is a need for a sensitive diagnostic test to detect multiple TMPRSS2–ERG fusion genes for an early diagnosis and prognosis of prostate cancer. Here, we propose to develop an assay for prostate cancer diagnosis using oligonucleotide-functionalized quantum dot and magnetic microparticle for optical detection of rearranged TMPRSS2–ERG fusion genes at a low concentration in urine. We found that our assay was able to identify three different types of fusion gene with a wide detection range and detection limit of 1 fmol (almost the same level of the RT-PCR result reported). Here, we show detection of multiple TMPRSS2–ERG fusion genes using color-coded oligonucleotides in cell lysate and urine. Keywords: fusion genes, prostate cancer, quantum dots, multiplexed assay, optical detectio

    Diagnosis of prostate cancer via nanotechnological approach

    No full text
    Benedict J Kang,1,2,* Minhong Jeun,1,2,* Gun Hyuk Jang,1,2 Sang Hoon Song,3 In Gab Jeong,3 Choung-Soo Kim,3 Peter C Searson,4 Kwan Hyi Lee1,2 1KIST Biomedical Research Institute, 2Department of Biomedical Engineering, Korea University of Science and Technology (UST), 3Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; 4Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA *These authors contributed equally to this work Abstract: Prostate cancer is one of the leading causes of cancer-related deaths among the Caucasian adult males in Europe and the USA. Currently available diagnostic strategies for patients with prostate cancer are invasive and unpleasant and have poor accuracy. Many patients have been overly or underly treated resulting in a controversy regarding the reliability of current conventional diagnostic approaches. This review discusses the state-of-the-art research in the development of novel noninvasive prostate cancer diagnostics using nanotechnology coupled with suggested diagnostic strategies for their clinical implication.Keywords: bioassay, nanomaterial, nanodevice, PSA, non-PSA biomarker, bodily flui
    corecore